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I. INTRODUCTION

The increasing pervasiveness, capabilities and complexity
of autonomous robots in human environments has highlighted
the need for more sophisticated control-sharing techniques that
allow humans to interact with, control and shape the behaviors
of these systems, while also maintaining a high level of safety
[2]. Control sharing can create a system that leverages the
strengths of each source of control while reducing the effects
of the weaknesses [1]. Our premise is that an understanding
of each by the other is essential for successful shared control
systems. We quantify human understanding of the dynamic
system through a metric of trust.

Our take on control sharing is to combine the relative
advantages of the human and robotic partners. In this work,
we consider that automation and optimal control techniques
are good at controlling highly dynamic systems, but require a
reference trajectory to try to stabilize to. While these reference
trajectories could come from automated path planners, engag-
ing a human partner has the advantage of using the exceptional
perceptual capabilities and situational awareness that humans
often have to operate in dynamic environments. The key is for
the human to provide reference trajectories that the automated
controller can track. We develop a human-in-the-loop control
framework that reasons explicitly about the amount of control
authority that should be allocated to the human based on
the trust that the autonomous system has in the human. The
purpose of this trust metric is to allow the system to learn how
able a user is in providing reference trajectories that can be
easily tracked by the automated controller. The adaptive trust
metric can then be used to develop a safer and more stable
shared-control system.

II. FORMULATION OF TRUST

In order to define, adapt and make use of a formal notion
of trust, our proposed framework consists of two steps. In the
evaluation of user input step, a trust metric is calculated as
a function of the deviation from the reference trajectory. The
control modulation step then uses the trust metric to allocate
control authority.

After each interaction with the system, a trust metric is
calculated using tools provided by optimal control theory. We
take a control-theoretic viewpoint in which we use the devia-
tion of the executed trajectory from the reference trajectory, as
this measure indicates how well the receding horizon controller

is able to track the user input. For a given trial i we calculate a
deviation metric δi. The deviation from the reference trajectory
can be captured by the Fréchet distance between the executed
and desired trajectories,

δi(f, g) = inf
α,β

max
t∈[0,1]

d(f(α(t)), g(β(t))) (1)

where f : [a, b] → V and a, b ∈ <, is the reference
trajectory and g : [a′, b′] → V and a′, b′ ∈ <, is the control
trajectory and (V, d) is a metric space. α and β are continuous
nondecreasing functions that map from [0, 1] onto [a, b] and
[a′, b′], respectively.

The trust metric should decrease as deviation δ increases. To
calculate the trust metric τ i at trial i, we represent the distri-
bution of deviations as a Gaussian distribution, δ ∼ N(µ, σ2),
where µ and σ2 are the mean and variance of an individual’s
deviation history. We then update the previous trust metric
τ i−1 by computing the probability P of δi

τ i = τ i−1 − γ ·P{δ = δi} (2)

where γ is a learning rate that determines how quickly the
trust decays with performance, and 0.1 ≤ τ ≤ 1.

This Gaussian distribution represents the system’s knowl-
edge of the user, and is iteratively updated after each trial.
Intuitively, if there is a large deviation from the desired
trajectory, then τ i should be low-because the user is providing
reference trajectories that are difficult for the controller to
track, which reduces the overall robustness of the system.

Modulation of the user’s input is realized through a com-
bination of a low-pass filter and scaling the input speed. By
removing the high-frequency content from the input signal, the
receding horizon controller is better able to track the reference
trajectory. Similarly, by scaling the input speed, users are
better able to control for momentary mistakes that can lead
to challenging reference trajectories. It is important to note
that these transformations can adversely affect more typical
task performance measures such as time to completion, but
this is a trade-off for system safety and stability.

III. EXPERIMENT DESIGN AND RESULT

Our trust-based shared-autonomy framework is demon-
strated on a simulated planar crane system, in which an
overhead robot with a winch has a mass suspended by a
string. We choose this system because it provides dynamics



that are difficult for a human to control, while allowing for the
definition of dynamic tasks that are representative of tasks for
which control sharing would be beneficial. Here we present
selected results from this study.

A. Experimental Setup

Inspired by a task that is currently part of real crane
operator certification tests, we implement a maze navigation
task within our simulated planar crane environment. We test
three different task configurations of increasing difficulty.
First, a low difficulty configuration where the total path length
is short, requires few turns (∼3) and the maze hallways are
wide. Then, a medium difficulty configuration where the total
path length is longer, requires more turns (∼5) and the maze
hallways are an average of 60% more narrow then the low
difficulty configuration. Finally, a high difficulty configuration
where the total path length is long, includes many turns (∼10)
and the maze hallways are an average of 50% more narrow
than the low difficulty configuration. A total of 21 (8 low
difficulty, 8 medium difficulty and 5 high difficulty) unique
mazes are used in this experiment.

Twenty-two users were recruited from the Northwestern
University community.1 Users were randomly grouped into
two cohorts. Static: The trust level was held static after the
initial training period, and Adaptive: The trust level evolved
throughout the experimental procedure. After the trust initial-
ization, each experiment consisted in a total of 20 trials. Five
trials of direct control on the low-difficulty maze and five trials
of shared-control on the each of the 3 levels of maze difficulty.

B. Results

We analyzed the system’s ability to modulate a user’s trust
metric to produce safer and more stable reference trajectories.
We performed a statistical analysis comparing the average
controller magnitude between the Adaptive and Static trust
cohorts in each maze configuration.

Statistical analysis was done using a two-tailed Student’s t-
test. In both the static (p < 0.01) and adaptive (p < 0.01)
trust cohorts, we saw a statistically significant decrease in
the average controller magnitude required to track the user’s
reference trajectory in the final maze configuration when
compared with the initial maze configuration. This suggests
that users in both cohorts are able to learn pertinent aspects
of the system dynamics and how to provide safe and stable
reference trajectories from the viewpoint of the automated
controller.

We also found (Fig. 1) a statistically significant difference
between the average controller magnitude required to track
references trajectories provided by users in the static trust
cohort versus those in the adaptive trust cohort, in the final
maze configuration (p < 0.01). As we see no statistical
evidence that one cohort outperforms the other in the first two

1Two participants were removed from the study before analysis due to a
poor understanding of the task requirements. On average, users completed
11.7 of the 15 test trials. The two removed users completed one trial each.

Fig. 1. Left: Simulated crane environment. Right: Average controller
magnitude per maze configuration for the static (red) and adaptive (blue) trust
cohorts. Mean (line) and standard deviation (variance envelope) are presented.

maze configurations, we can infer that the adaptive trust for-
mulation allows the system to adapt to the (possibly changing)
abilities of the user, and so modulate the user input to provide
safer reference trajectories for the controller to stabilize to—
regardless of the abilities of the individual user.

IV. CONCLUSION AND FUTURE WORK

Thus, results show that an adaptive trust metric, based on
our control-theoretic formulation, was able to improve the
ability of the shared-control system to produce references
trajectories that were significantly (p < 0.01) easier for the
controller to track than those provided by users with a static
trust metric. The reduced average controller magnitude reflects
the system’s ability to learn appropriate methods for modulat-
ing the operator’s input, resulting in reference trajectories that
are easier to track. This work creates a foundation upon which
to expand the trust-based shared control framework to include
the online, continuous adaptation of trust, more granular user
skill level classification, as well as applications to additional
tasks and robot platforms.
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