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Abstract—We propose a generalizable natural language in-
terface that allows users to provide corrective instructions to
an assistive robotic manipulator in real-time. Allowing human
operators to modify properties of how their robotic counterpart
achieves a goal on-the-fly increases the utility of the system by
incorporating the strengths of the human partner (e.g., visual
acuity and environmental knowledge). Our natural language
interface is based on a probabilistic graphical model, specifically
a Distributed Correspondence Graph (DCG), that is employed
to assign semantic meaning to user utterances in the context of
the robots environment. We then use the desired corrections to
alter the behavior of the robotic manipulator by treating the
modifications as constraints on the motion generation (planning)
paradigm. In this paper, we highlight four dimensions along
which a user may wish to correct the behavior of his or her
assistive manipulator. We develop our language model using data
collected from Amazon Mechanical Turk in hopes of capturing
a comprehensive selection of terminology that real people use
to describe desired corrections. To demonstrate the efficacy of
our approach, we run a pilot study on hardware with users
unfamiliar with robotic systems and analyze points of failure
and future directions.

I. INTRODUCTION

As the desire for, and prevalence of, household robots
continues to grow, the ability of humans to communicate
particular goals and actions to their robot counterparts will be
an integral facet in their successful adoption. Similarly, it will
be important for users to be able to customize properties of
how a robot achieves a desired goal and quickly interfere amid
safety concerns. In particular, we consider that the automation
may not have all pertinent environmental information (e.g.,
whether it is safe to move near another object or whether the
object currently in the arm’s grasp is stable) when planning
and therefore may be insufficient for robotic solutions that
promise long-term utility. To address these problems, we
propose a natural language interface that allows users to
interject corrections to the trajectory of a robotic manipulator
in real-time. This approach balances the strengths of a human
user (i.e., perception and general situational awareness) with
the strengths of the robot (i.e., control) to create a highly
adaptive and collaborative system. It also allows for online
customization to human preferences.

Natural language is an exciting modality for human-robot
communication for a number of reasons. One such reason
is that it provides an intuitive bridge between non-expert
users and their robot partners, allowing users to modify the
behavior of a robot without previous knowledge of the system
or programming experience. Additionally, as natural language
is a very expressive form of communication, users can provide
corrections with any level of detail or fidelity that they
choose. Natural language is an especially important modality
in assistive and rehabilitation robotics where a user’s ability
to physically interface with a robot is frequently limited by
injury or disability.

Within the domain of assistive and rehabilitation robotics,
there are a wide range of patients who retain control of their
vocal muscles but have difficulty using standard human-robot
interfaces that require a high level of fine motor control (e.g.,
joysticks and/or buttons). Therefore, providing an alternative,
yet natural, means by which a user can interact with their
assistive robot is of great utility.

A primary challenge in building a language-based communi-
cation system for human-robot partners is the translation from
unstructured natural language to an actionable representation
in the robot’s world model. To be flexible and robust, the
robotic system must be able to comprehend both qualitative
and quantitative aspects of a user’s utterance. However, achiev-
ing this goal from first principals is a significant challenge
due to the complexity of natural language. The problem of
how to best map linguistic elements to their corresponding
symbolic representations in the real world is known as the
symbol grounding problem ([1]). Solving this problem is
important in practice because it allows a robot to interpret
how a spoken phrase relates to the current environment and
therefore improve its internal representation of the world.

Our solution is to limit the size and scope of the language
that the robot must understand to the space of corrections.
We begin with a robotic system able to generate a preliminary
trajectory to achieve a desired goal. The initial assumption is
that the user does not have a strong preference in how the
goal is achieved. We then allow the user to provide natural
language commands to correct the behavior as they see fit.



Therefore in our approach, the robotic system is not required to
comprehend the full granularity of an initial utterance. Instead,
we focus on allowing the user to provide corrections that
modify essential attributes of the robot’s behavior such as the
speed, orientation of the end effector, or spatial constraints
throughout the trajectory. This model allows us to interpret
natural language instructions as constraints on the initial
trajectory that can be used to update the trajectory on-line.

To date, natural-language corrections have seen limited
use within robotics. Moreover, our motivating and target
application domain is assistive and rehabilitation robotics,
which at least clinically does not yet leverage natural-language
interfaces for operating assistive machines that physically
move in the world—in spite of the fact that such interfaces
could be incredibly useful for particular patient populations.

This work aims to aid users of assistive robots by allowing
end-users without robotics expertise and with severe motor
impairments to use free-form natural language to adapt, on the
fly, the autonomous behavior of their robotic aids—in response
to environment dynamics or novel scenarios, and also to best fit
their personal preferences. The approach moreover is general
to a broad range of collaborative human-robot domains, in
addition to rehabilitation and assistance.

We begin with related work in Section [[I] followed by a
detailed presentation of the scope of our problem in Sec-
tion [[T, We then describe our approach in Section [IV]and our
implementation in Section [V] Finally, we evaluate our work
in Section [VI] and conclude in Section [VII}

II. RELATED WORK

This section overviews related literature in the areas of
speech-based interfaces for assistive robots, corrections pro-
vided to robot systems and natural language understanding.

A. Assistive Robots

The value of speech as an input modality for persons
with severe motor impairments to operate assistive machines
has been leveraged for use with robotic arms [3], robotic
wheelchairs [13] and mobile manipulators [20]. The human
typically uses speech to provide high-level goals or teleop-
eration commands for the autonomy. For example, Volosyak
et al. [20] present an autonomous system called FRIEND-II, an
assistive mobile manipulator that actively queries the human
for task goals or execution assistance, and through speech the
user provides high-level (e.g., “pour a drink) and low-level
(e.g., “gripper up”) instruction.

B. Corrections from Humans

Pose corrections from a human also are provided to assistive
robot manipulators, though typically through interfaces other
than speech. For example, in the KARES-II system, the user
indicates the target object with their gaze and visual-servoing
automation brings the object near user’s head, who then fine-
tunes position through a shoulder motion interface [4]. Pose
corrections—translational or rotational—are provided as static

Fig. 1.

Example workflow. From left to right : (1) User issues initial
command. (2) Arm begins to move and user recognizes undesirable action.
(3) User stops arm and provides desired correction to motion. (4) Arm begins
moving again, this time with new planning parameters. (5) Arm completes
the task with user correction applied.

step amounts to the MANUS manipulator on the FRIEND-
II system, via EEG selections from a graphical display [19].
Our approach tackles a broader scope of corrective instruction
than only direct pose corrections, for example spatial relations
(e.g “go over the box”’) between the robot and the environment.

Outside of the field of assistive robotics, previous methods
that provide explicit corrections largely rely on tactile sensors
that measure physical interactions. Schmid et al. [L6] use
small nudges on a robot’s end-effector to define high-level
goals and trajectory modifications. Similarly, Argall et al. [2]]
record finger swipes that translates into iterative changes in
the orientation or position of their iCub robot. (See Argall
and Billard [[1] for a survey of touch-based corrections.)

Implicit corrections to robotic manipulators also are pro-
vided as rewards within Reinforcement Learning paradigms—
where the robot essentially is told the (positive or negative)
value of a state-action pair, without being instructed explicitly
on what to do instead. For example, within the field of
Learning from Demonstration there are works that first seed an
initial policy with human demonstrations, and then update that
policy based on rewards (implicit corrections) accumulated
with experience [L1].

C. Natural Language Understanding

There is a wealth of related work in developing algorithms
that improve a robot’s ability to understand natural language.
Specifically, there is much interest in using natural language as
a method of specifying task goals for mobile robots and robotic
manipulators. For example, the system presented by MacMa-
hon et al. [12]] parses natural language into a set of high-
level route instructions that represent knowledge about spatial
actions and layouts. Similarly, Matuszek et al. [[14] learn a
natural language-to-action model based on example pairs of
commands and their corresponding control expressions. These
works focus on developing high level plans that can be fed to a
local planning method, rather than on instantaneous low-level
corrections to motion trajectories.

In closely related work, Tellex et al. [18] describe a proba-
bilistic graphical model (the Generalized Grounding Graph,
or G3) that defines a factor graph connecting natural lan-
guage constituents to groundings in the environment. Howard
et al. [10] define an alternative graphical model formula-
tion (the Distributed Correspondence Graph, or DCG) that
assumes conditional independence of all linguistic phrases



and conditional independence of grounding elements within a
grounding, which reduces the search space and increases the
efficiency of the learning and inference computations. Both
of these approaches demonstrate their effectiveness in using
language as a method of communicating high level goals.
Our work builds on previous language-based interfaces for
robotic manipulators by allowing users to impart preferences
on how the robot achieves the desired goal by modifying the
robot’s trajectory during run-time. One major difference is that
previous work places the burden of dealing with a dynamic
environment on the robot. Our approach instead leverages
the human’s perceptual and situational awareness abilities to
provide a robust solution in unpredictable environments, in
addition to being responsive to the user’s personal preferences.

III. PROBLEM DEFINITION

Our principal aim is to develop robots that can assist people
with everyday tasks. These machines are particularly important
for users with limited motor control as they can restore lost
ability and a sense of personal freedom. We know that end-
users within the rehabilitation domain overwhelmingly prefer
to retain as much control as possible, however we also know
that many assistive machines are inaccessible to those with
severe motor impairments—precisely because of the control
complexity in operating these machines, and limitations in
the control interfaces available to these patients. There is an
opportunity for robotics autonomy to offload a portion of
the control burden, and to introduce natural language as an
interface for the collaborative operation of assistive robots.

In order for collaborative assistive robots to be a reality,
we need to develop natural interfaces and simple methods
for users to control not only what their robot does, but how
it does it. Namely, as human-robot teams work together in
shared spaces, users need to be able to augment pertinent
characteristics of the behavior of their robotic counterpart.

However, there is the supplementary problem of how to
map a spoken command to the robot’s world model when
considering language as a method of human-robot communi-
cation. Robotic manipulators in particular require significant
computation to appropriately control, due to the number of
variables that must be specified. Moreover, unless the user is
willing to define the full and exact trajectory in joint space,
it is likely that there are many, if not an infinite, number of
ways to ground the language in the environment.

To solve this problem, our approach builds a model that
is both effective at grounding utterances in the environment
and robot control, and also is efficient even for non-experts.
While previous research has focused on using natural language
as a method for providing high-level planning goals to robotic
partners, our approach uses language as a means for providing
instantaneous corrections to a robot’s trajectory.

Through corrections, a human partner can impart relevant
contextual information as well as personal preferences to their
robotic counterpart. This may improve the robustness and
acceptance of the joint human-robot system. By empowering
the human to provide corrections, we aim to addresses the

questions of how users can customize their robot’s behavior
to their specific needs, and how the robot system can provide
robust operation for long-time assistance. An example of the
work flow can be seen in Figure

IV. APPROACH

Our natural language model is based on a grammar and
set of features that specifically relate language constituents to
corrective actions along the robot’s trajectory. By using an
initial trajectory with a known grounding as a starting point
and focusing on the space of corrections, both the language
understanding and motion generation problems become sig-
nificantly more tractable from a computation standpoint.

A. Distributed Correspondence Graph

Fig. 2. A DCG used to infer natural language corrections from the
utterance “move the ball over the box™ The factors flj , groundings iz and
correspondence variables qbij are functions of the symbols used to represent
natural language corrections.

In order to understand natural language instructions, it is
necessary to assign language to a meaningful set of concepts
(“groundings”) in the robot’s world context, a task known as
symbol grounding. These groundings can be perceived objects,
regions in the world, paths for navigation, actions the robot
can take, et cetera. For example, consider the instruction
shown in Figure 2] “move the ball over the box”. Both “the
ball” and “the box” ground to objects in the world model,
“over” grounds to a region above the box object, and “move”
grounds to an intended manipulation action as constrained by
the grounded region and objects. Presented more formally, the
challenge of providing robots with the capacity to understand
natural language can be described as finding the most likely
(x* (t)) robotic behavior or action (x (t)) given the context of
an environment model (Y) and a provided natural language
utterance (A):

x*(t) = argmax p (x(t) |A, T) (1
x(t)

In practice, this is a difficult maximization problem because
of the unrestricted nature of both the language and the en-
vironment inputs. Some contemporary work has approached
modeling this problem via factor graphs that dynamically
predict the expressed groundings for linguistic constituents.
In particular, the G3 model [17] uses the compositional and
hierarchical parse structure of language to generate a factor
graph that connects language constituents (phrases: A\; € A)



to groundings (objects, locations, paths: v; € I') and binary
correspondence variables (true/false: ¢; € ®) that indicate a
true or false association between a particular grounding and
language phrase.

This approach provides an effective framework for under-
standing robotic instructions, but becomes increasingly com-
putationally demanding as the complexity of the environment
and/or the robotic platform increase(s) (e.g., an environment
composed of sets of objects or a robotic manipulator with 6
degrees of freedom). In order to provide real-time functional-
ity for a more diverse set of practical scenarios, it is necessary
to improve the run—time efficiency of the model.

The model used in our work is an alternative graphical
model formulation of the grounding problem, the Distributed
Correspondence Graph [10]. Specifically addressing the issue
of runtime performance, researchers proposed the Distributed
Correspondence Graph (DCG), replacing search in the space
of planning trajectories with search in the space of boundaries
and preferences of behavior (e.g., regions instead of locations;
constraints instead of sampled paths). This effectively changes
the problem of inferring a solution from the continuum of
robot actions to one of formulating a robot planning problem
that can then be handed off to a dedicated planner. This change
provides two specific advantages when dealing with the size of
the search space. First, the space of planning constraints that
can be understood is finite, bounded by the cartesian product
of the objects in the environment and the considerable rela-
tionships between them. Second, the expression of groundings
can be evaluated independently from one another. By assuming
conditional independence of grounding constituents, the model
can be factorized such that only the correspondence variables
are unknown. We thus compute the most likely correspondence
variables:
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The DCG model has recently been adapted and applied
to several collaborative human-robot scenarios [3} 16, 8, 9.
The model presented in this paper differs from these previous
adaptations in several distinct ways. First, the language used
to describe corrective updates differs from that what is used
to describe initial commands, therefore subset of language
that must be understood changes. Often, the instructions
are ambiguous comparison utilizing implicit information. For
example, given an initial instruction to, “Pick up the cup,’
the robot may then receive an updating instruction, “by the
handle”. In this case, the update is modifying the preferences
for grasp locations, but the grasp object is implicit. To address
this, we introduce the notion of prior context, consisting of the
initially expressed instruction and its grounded root phrase.
This prior context is used as additional information during the
update of the planning constraints.

Secondly, while computational efficiency and real-time per-
formance was a consideration in each of the other DCG
adaptations, it is a necessity in this work due to the nature of

the problem we are addressing. For example, again consider
an initial instruction, “Pick up the cup”; the robot may initiate
a trajectory to pick the cup up from the top. When provided
with the update statement, “by the handle,” the system must
understand and incorporate the new information in real-time.
Certainly, any execution of the update instruction much be
initiated prior to the completion of the initial task.

Similar to other applications, our approach requires the
incorporation of a grounding space that is sufficient for repre-
senting all relevant semantic information. In our particular im-
plementation this is the space of natural language corrections.
Given the real-time aspect of our system, it is also important
that this grounding space be efficient in its representation; the
run—time performance of the model is dependent on the size
of the search space, which in turn depends on the space of
groundings. We discuss the space of groundings in

1) Features and Training : The factor nodes in the graph-
ical model are represented by log-linear models with binary
features. Optimized feature weights (wy, € W) are learned
from an annotated corpus of examples via the Limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm, as
shown in Equations [3] and
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While the DCG model is capable of expressing features
as defined by the environmental context (i.e., features for
capturing spatial characteristics of the environment, such as the
distance to nearest object), our implementation only considers
features in the context of language and the presence of
objects. Given the graphical model’s hierarchical nature, and
the dependency of a given factor on child node groundings,
we also incorporate features for grounding inheritance.

2) Space of Groundings : The space of groundings is
composed of six different symbols and can be broken into
two categories as defined by the type of semantic information
they express.

3) Environmental Groundings : Object, spatial relationship
and region grounding types are all used in our model to refer
to the environment.

Object groundings represent a physical object and have
specific properties capturing model-relevant information about
the object. Specifically, each object has an associated type
(e.g., “ball” or “box”), pose in the world, list of type-
specific landmarks, and a unique identifier to disambiguate
between objects of the same type. The type-specific landmark
information defines grasp locations in grasping tasks and path
preferences for pick-and-place tasks.

Spatial relation and region groundings represent relative
spatial information. Spatial relations groundings consist solely
of a type; the noun phrase “the left” would ground to a spatial
relation grounding of type “left”. Region groundings combine



spatial relation information with object groundings; so, the
noun phrase “the ball on the left” would ground to a region
composed of a spatial relation grounding of type “left” and an
object grounding of type “ball”.

Environmental groundings however are insufficient for rep-
resenting the kind of higher-level robotic planning problem
information expected from natural language instructions, so
we also incorporate symbols meant to express constraining
information about the planning problem.

4) Planner Groundings : Our model implementation uses
constraint, cost, and goal type groundings to express relevant
information about the behavior expected by the robot that will
constrain the planning problem.

Constraint groundings consist of a type, value and an
associated object grounding. The constraint type defines the
kind of constraint that is being applied to the action (e.g.,
velocity, orientation), where the value is defined by the value
property The associated object defines to which object the
constraint should be applied. So, the verb phrase “slowly move
the ball” would be expressed by “velocity,” associated object
“ball” and a low value that satisfies the notion of “slowly”.

Cost groundings represent preferences for different paths.
Each cost is composed of a type, an object and a landmark. In
this case, the type can either be a “reward” or a “penalty”. The
object property defines the object associated with the cost, and
the landmark indicates a preferred path relative to the object.
For example, the instruction “move the ball over the box”
would have an expressed cost grounding of type “reward,’
associated object “box,” and a landmark to indicate the top
of the box, thereby representing a preference for the path of
motion to pass over the top of the box.

Goal groundings represent desired goal information. A goal
is composed of a type (e.g., “grasp” or “place”), an associated
object, and a landmark. The goal type defines the type of
action, the object defines the object associated with the action,
and the landmark defines a preferred location for the action.
For example, the instruction “pick up the box by the top”
would have an expressed goal grounding of type “grasp,’
associated object “box,” and a landmark to indicate the top
of the box, thereby representing a desired goal to pick up the
box by the top.

5) Corrective Language: Our approach focuses specifically
on grounding online corrections to robot trajectories. In this
work, we examine the space of corrections for a robotic
manipulator along four dimensions. They are:

o The speed with which the manipulator executes a trajec-
tory (£1).
o The orientation of the manipulator’s end effector (/).

o The position of the end effector relative to other objects
in the environment (¢3).

o The gross contact point during grasping motions (£4).

ICurrently these values are hand defined continuous values that can be
interpreted relative to each other (e.g., faster or slower), but can not be set to
any value the user would like.

Note that the first correction concerns the rate of the trajectory
execution (¢1), the second concerns orientation within the
world frame (¢5), the third concerns the location of interme-
diary points along the trajectory (¢3), and the fourth concerns
the location of the final goal of trajectory ({4).

B. Motion Planner: Riemannain Motion Optimization

The resulting corrections can be fed directly into many
standard path planning approaches, especially optimization-
based motion generators that provide convenient interfaces to
shaping the robot’s behavior through costs and constraints.

Our implementation makes use of Riemannian Motion
Optimization (RieMO) [13]], which provides both a flexible
interface to arbitrary smooth constraints on the motion and
an interface to shaping the geometry of the workspace around
obstacles to bias the way in which the end-effector moves
around them. We encode the grounded constituents discussed
above into the motion using a combination of these two tools
along with trajectory re-timing to modulate execution speeds.

V. IMPLEMENTATION

Here we provide details our end-to-end implementation on
an assistive manipulator. We employ a MICO robotic arm, a 6
Degree of Freedom (DoF) robotic arm from Kinova Robotics
with a 2-finger gripper. Our language model is based on an
adaptation of the open-source Human to Structured Language
(H2SL) software packageﬂ that allows us to convert free-form
text input to its corresponding structured language grounding
in the robot’s environment.

Training data for the language model was gathered using
Amazon Mechanical Turk (AMT), an online crowdsourcing
platform. Using this platform, we present participants with
pairs of videos that show the MICO robotic arm performing
the same task with one significant modification to some
characteristic of its trajectory. We then ask the subjects to
describe the main difference between the two videos, using
language that describes the variation as a correction.

In total 77 AMT participants contributed 280 labeled ex-
amples. We added to this dataset 24 examples gathered during
an initial study with three members from our lab. We analyze
the resulting responses to remove data that either wasn’t
appropriately worded as a correction or was repetitive of
previous responses. This resulted in a total of 28 training
examples. Our corpus was comprised of 100 phrases and an
average of 3.57 phrases per example.

VI. EVALUATION
We first analyze the language model in Section and
then assess the full system with a pilot study in Section [VI-B]
A. Language Model

We evaluate our language model along similar metrics to
those proposed by Howard et al. [10]. First, we perform all
possible combinations of leave-one-out cross-validation on our
model. Using this approach, we correctly infer the constraint

Zhttps://github.com/tmhoward/h2sl
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in 16 of the 28 variations. In each case where the held-
out example was incorrect, we find the error was due to a
word existing in the example but not in our training set for
that test. The only exception was one case where the correct
grounding was expressed in addition to an erroneous margin
constraint. Additionally, in cases where the model suggested
the incorrect inference, it was never completely incorrect—
that is, the correct semantic information was expressed for all
leaf phrases (no children) with known words.

We also report the average runtime of correction inference
using our DCG model. On our test data the system runs at an
average of 0.0236 seconds per inference and on our training
data the system runs at an average of 0.0253 seconds per
inference. As we increase the scope of our corrections, we
expect increased complexity of our model to increase as well.

B. Pilot Study

Here we report on a pilot study with novice users. The
study consisted of three able-bodied participants recruited
from the Rehabilitation Institute of Chicago. Each experiment
was executed with a distinct set of initial conditions (starting
location and environment). For each type of correction, we
developed a predefined environment with a specific task that
was described to the user in simple language (e.g., “move to
the other side of the block™). Users triggered the correction by
verbalizing “stop,” and then described the intended correction
using free-form language. If the correction provided by the
user was successfully parsed and grounded in our model, it
was then passed to the motion planning algorithm as a set of
constraints, which were used to update the trajectory. If our
model was unsuccessful in parsing or grounding the user’s
language, the planning parameters were not updated and the
MICO would continue along its initial trajectory. For each
type of correction, this procedure was repeated until either
(1) the user provided language that was successfully parsed
and grounded or (2) a maximum of 3 attempts. In between
unsuccessful attempts we asked users to modify their phrasing
to try and help the robot understand their correction. An
example of this workflow can be seen in Figure [T}

We analyze the results by noting how far along the process-
ing pipeline users were able to get in each trial. A successful
trial involves (1) parsing the user input, (2) grounding the
user input, (3) ensuring the grounding matches the desired
correction, and (4) updating the motion planner with a new
set of constraints based on the grounding.

The pilot study included a total of 21 full trials (3 users,
7 full trials each). Of the 21 full trials, 8 resulted in a
failure to parse the user input, 3 were grounded incorrectly
by our language model and in the remaining 10 trials, the
user input was successfully parsed, grounded and applied to
the executed trajectory. In all, there were 46 total attempts,
of these 28 attempts resulted in a failure to parse the user
input, 3 resulted in a failure to ground to a correction, 5 were
grounded incorrectly and 10 were full successes. We analyze
these results by separating the failure cases from the successes.

In particular, we examine each point of failure and reason
about areas of improvement.

When an attempt resulted in a failure to parse, we can im-
mediately say that this was due to a lack of data in the grammar
we developed from the Amazon Mechanical Turk responses.
This issue is easily improved through an expanded grammar,
which can come from further data collection. The fact that a
large number of failed attempts occurred at this level, and that
not many occurred after this point, is encouraging as this is the
simplest part of the system to improve. It also illustrates that
there is likely a difference in the language that users choose
when using the real hardware versus watching videos.

When a user input was successfully parsed but our language
model failed to ground the utterance in the symbol space,
it suggests that our model does not cover the full space of
corrections and that we either need a more complete set
of features or we need to include more training data. In
fact, during analysis, we realized that all 3 attempts that
ended in this scenario did so due to a single missing feature.
Specifically, our model did not appropriately associate certain
object landmarks with spatial relations. After the completion
of the pilot study, we added this feature to our model and it
now successfully grounds all 3 utterances.

When a user input was successfully parsed and grounded,
but the there was a mismatch between the grounding and the
desired correction, it could potentially point to the fact that
there is a conflict between the user input and training data.
However, our analysis shows that in all 5 attempts that ended
in this scenario, the user provided ambiguous input that could
easily be interpreted in the manor presented by our language
model. For example, in one experiment the user was trying to
correct the method by which the MICO picked up a teabox,
the user provided the correction “move over box.” Our model
grounded this statement to a cost symbol representing the
desire for the arm to move above the box, as opposed to the
desired grounding of a goal symbol suggesting that the arm
pick up the box from its top.

Lastly, in cases when the full system succeeded we asked the
users to give us their impressions of how well the modified
trajectory matched their desired correction and their general
thoughts on the timing of the system. In all 10 trials that
ended in success, users reported “high satisfaction” with both
the modifications to the trajectory and the responsiveness.

VII. CONCLUSION

In this paper, we present a natural language interface that
allows a human user to correct the behavior of a collaborative
robot system at run-time. We discuss a pilot study used to gain
insights into the viability of such an approach, leading to a
future full evaluation with end-users suffering from a range of
motor impairments. Our method improves the user experience
while simultaneously improving the communication and exe-
cution of a user’s desired trajectory, when compared to high-
level goal driven approaches. We believe our collaborative
approach will improve human-robot communication and aid
in the adoption of assistive robotic technologies.
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