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Abstract—We present a structured neural network architec-
ture that is inspired by linear time-varying dynamical systems.
The network is designed to mimic the properties of linear
dynamical systems which makes analysis and control simple.
The architecture facilitates the integration of learned system
models with gradient-based model predictive control algorithms,
and removes the requirement of computing potentially costly
derivatives online. We demonstrate the efficacy of this modeling
technique in computing autonomous control policies through
evaluation in a variety of standard continuous control domains.

I. INTRODUCTION AND BACKGROUND

The question of how to best generate autonomous control
policies for mechanical systems is an important problem in
robotics. Research in this field can be traced back to early work
on optimal control by Pontryagin [20] and Bellman [5]. Since
this time, significant progress has been made in both the theory
and application of autonomous control techniques [22, 24].
However, challenges remain in developing strategies that are
valid without a priori knowledge of the system dynamics.

One possible solution is to use model-free policy generation
techniques [9]. These methods require no explicit model of
the system dynamics and have been shown to be effective
in numerous domains [14, 15]. However, model-free policy
generation techniques often require massive amounts of data
and are therefore difficult to evaluate on real-world robotic
systems [9]. An alternative option is to learn an explicit model
of the system dynamics which can be incorporated into an
optimal control algorithm. Model-based control methods are
more data-efficient and often easier to apply in real-world
scenarios [3, 6]. However, many optimal control algorithms
require some notion of derivatives to compute a control
policy [2, 16, 18, 25].

Computing the required derivatives can often prove chal-
lenging with complex modeling techniques like deep neural
networks [4]. Additionally, these black-box methods make it
difficult to analyze the underlying dynamics of the system.
There are, of course, alternative modeling techniques [1, 3,
8, 11, 13, 15]; however, there remains a desire to incorporate
modern, deep neural networks into the optimization loop due
to their ability to model challenging dynamic features (e.g.,
contacts) and scale to high-dimensional tasks [12, 19, 27]. In

Fig. 1: Structured neural network architecture for model-based
predictive control. The final layer of the A-subnet must be the
same dimension as the state space, and the final layer of the B-
subnet must be the same dimension as the control space. The
network then computes a function of the form ẋ = A·x+B ·u.
This structure makes it easy to recover time-varying derivatives
(i.e., A,B) for use in model predictive control algorithms.

this work, we provide a method that combines the expressive
power of neural network models with gradient-based optimal
control algorithms. Our solution is based on a neural network
architecture that enforces a linear structure in the state and
control space, making it easier to analyze and incorporate into
model-based control.

II. STRUCTURED NEURAL NETWORKS FOR
MODEL PREDICTIVE CONTROL

In this section, we define our structured neural network
architecture and then detail how the learned models can be
integrated into model-based control algorithms.

A. Structured Neural Network Architecture

Our neural network architecture is composed of two parallel
subnetworks (see Figure 1). The architecture of the first
subnetwork (A-subnet) can be defined by any number of
layers and parameters, and is only constrained such that
the final layer must have N parameters, where N is the



dimension of the system’s state space. Similarly, the second
subnetwork (B-subnet) is only constrained such that the final
layer must have M parameters, where M is the dimension
of the system’s control space. The network then combines (1)
the dot product of the output from the A-subnet and the state
x, with (2) the dot product of the output from the B-subnet
and the control u, through an element-wise add operation.
This architecture describes a single, global model of the form
ẋ = A(x, u) · x+ B(x, u) · u, which is trained with standard
gradient-based techniques and can be evaluated and linearized
anywhere in the state space. Here, the A-subnet represents
the linearization of the dynamics model with respect to the
state variables (i.e., ∂f

∂x ), and the B-subnet represents the
linearization of the dynamics model with respect to the control
variables (i.e., ∂f∂u ).

B. Integration with Model-based Control

Given a learned dynamics model, one can compute au-
tonomous control policies through data-driven methods [12] or
through integration with optimal control algorithms [2, 16, 25].
On the optimal control side, researchers have mostly ex-
plored sampling-based optimization methods. For example,
researchers have proposed computing control trajectories with
a random shooting method [19] and with model predictive
path integral [27] control. The reason that sampling-based
methods are appealing in this domain is that the solution does
not depend on computing potentially costly gradients with
respect to the state and control variables. However, the solution
does require generating a large number of samples to cover a
sufficient portion of the action space. The challenge, then, is
to balance the number of samples generated at each time-step
with the rate of the control loop. As the dimensionality of the
action space grows, this becomes more and more challenging.

In contrast with sampling-based methods, gradient-based
optimization techniques provide an efficient method of com-
puting control trajectories. Additionally, these methods provide
sensitivity information in the form of time-varying Jacobians.
However, integrating neural network models with these opti-
mization techniques can prove difficult. This is because it is
unclear a priori how to compute the necessary Jacobians (∂f∂x ,
and ∂f

∂u ). By enforcing a linear structure on the neural network
architecture (as described in Section II-A), we can efficiently
predict the evolution of the dynamic system as well as the
required Jacobians. Then, to generate an autonomous policy,
we solve the following optimal control problem

minimize
u

J =

∫ T−1

t=0

l(x(t), u(t)) + lT (x(T ))

subject to ẋ(t) = fθ(x(t), u(t)),

u(t) ∈ U, x(t) ∈ X,∀t

(1)

where fθ(x(t), u(t)) is the learned, structured system dynam-
ics, l and lT are the running and terminal cost, and U and X
are the set of valid control and state values. The solution of
this problem is the control sequence that minimizes the cost.

III. EXPERIMENTAL VALIDATION

We validate the efficacy of our described approach through
experimentation on three standard control domains. Our first
experimental environment is OpenAI’s implementation of the
continuous mountain car problem [7] (Figure 2a). The moun-
tain car is defined by a two dimensional state space (x, ẋ) and
one dimensional control space (ẍ). The second experimental
environment is an implementation of the classic cart-pole
swing up problem written from scratch (Figure 2b). The cart-
pole is defined by a four dimensional state space (x, ẋ, θ, θ̇)
and a one dimensional control space (ẍ). The final experimen-
tal environment is a two-link arm written in the Bullet physics
engine and described in a related CMU course (Figure 2c).
The two-link arm exists in a four dimensional state space
(θ1, θ̇1, θ2, θ̇2) and is controlled with a two dimensional signal
(θ̈1, θ̈2). All three environments are defined with continuous-
valued state and control spaces.

A. Model Learning Details

In this section, we describe our data collection method and
the training procedure.

1) Data collection: We collect data through observation
of trajectories produced by the system using control inputs
sampled uniformly at random. The data is collected in tuples
of (x(t), u(t), ˙x(t)), where ẋ(t) is computed as x(t)−x(t−1)

dt
and dt is the timestep. For each environment, we collect 500
trajectories, which are terminated at either 500 steps or when
the system violates environment boundary or safety conditions.

2) Training the model: Given a dataset of tuples
(x(t), u(t), ˙x(t)), we train the dynamics model fθ(x(t), u(t))
by minimizing the following error function

ε =
∑

(x(t),u(t),ẋ(t))∈D

1

2
||fθ(x(t), u(t))− ẋ(t)||2 (2)

We use the Adam optimizer with a learning rate of 0.001. Half
the data is used for training and half for validation. We find
that no data preprocessing is necessary.

IV. RESULTS

Our evaluation consists of state plots which demonstrate that
our defined neural network architecture can be used to solve
model-based control problems. Each example solution depicts
the initial state of the system (the start of the state trajectory,
which is chosen at random), the time-varying state produced
by our model-based control algorithm (red and blue), and the
goal state (black). In Figures 2d, 2e, 2f, we relay a single
solution for each experimental environment, however, we note
that our algorithm produced successful control trajectories
(with respect to the desired goal state) from a variety of initial
conditions. Additionally, our approach was able to successfully
generate control trajectories that reached arbitrary goal states
in the two-link arm environment.

These results suggest that our structured neural network
can be used to learn a global model of the system dynamics,
while simultaneously enforcing linearization constraints that
make it possible to recover time-varying derivatives without
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(a) Mountain Car (b) Cart-Pole (c) Two-Link Arm

(d) Mountain Car (e) Cart Pole (f) Two Link Arm

Fig. 2: Subfigures (a), (b), and (c) are pictorial representations of our experimental environments. Subfigures (d), (e), and (f)
are state diagrams demonstrating the efficacy of our model-based control algorithm.

additional computation. In contrast to approximation methods
(e.g., numerical differentiation) and symbolic methods (e.g.,
automatic differentiation), our approach can be thought of as
a prediction method for computing the required time-varying
derivatives. Related work in this area includes the transfor-
mation network proposed in [26] which directly predicts the
parameters of an A and B matrix in a latent space. In contrast,
our approach does not explicitly learn parameters of a matrix;
instead we learn nonlinear mappings (A-subnet, B-subnet)
that we treat as linearizations of the global model in the
structure of our network network. This allows us to learn a
global model of the system dynamics, while simultaneously
enforcing linearization constraints. A related call for the use
of structure in neural networks has been explored in model-
free policy generation. In [23], researchers describe a network
architecture that combines linear and nonlinear policies into a
single control model. In our work, we instead enforce structure
that mimics linear time-varying systems, and incorporate these
models into optimal control algorithms.

A. Why We Think This Works

In this work, we address the bottleneck associated with
computing gradients of the system model through the appli-
cation of a structured neural network that explicitly encodes
linearization constraints and therefore reduces the computa-
tional complexity necessary to recover the required Jacobians.
However, without further study, it is not clear whether or
not the learned A and B-subnetworks actually approximate
the required time-varying derivatives. Experimental evidence
suggests that the vectors represented by these networks are,
at a minimum, pointing in the direction of the gradient. This

claim is based on the fact that (1) our model-based control
algorithm produces successful policies in a variety of control
domains, and (2) when we incorporate the learned system
model into an MPC algorithm, we treat the output of the
subnetworks as first order derivatives of the system dynamics.

B. Open Questions

We now pose a number of open questions that we plan
to address in future work. In particular, we are interested in
exploring how our structured neural network model compares
with alternative methods of computing time-varying deriva-
tives. One such solution is to use a finite differences method
for numerical differentiation. From a practical standpoint, we
note that this method is prone to round-off errors and is
computationally expensive in an iterative, receding-horizon
framework. Another solution is to use automatic differentia-
tion [4]. This approach has been shown to work well, however
it requires well formed expression graphs and derivatives
computed at compile-time to work efficiently enough for
online optimization [10]. In future work, we plan to compare
and contrast these methods in high-dimensional control spaces.

V. CONCLUSION

In this work, we propose a structured neural network that
can be used to solve model-based control problems. The
architecture makes it easy to integrate the learned models
with gradient-based optimal control algorithms and simplifies
the interpretation of a system model parameterized by a deep
neural network. This idea is inline with other recent calls for
simplification of data-driven control strategies such as [17, 21].
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