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Abstract—We present a novel object detection pipeline for
localization and recognition in three dimensional environments.
Our approach makes use of an RGB-D sensor and combines
state-of-the-art techniques from the robotics and computer vision
communities to create a robust, real-time detection system. We
focus specifically on solving the object detection problem for table
top scenes, a common environment for assistive manipulators,
especially in laboratory settings. Our detection pipeline locates
objects in a point cloud representation of the scene by exploiting
known geometric relationships through an unsupervised clus-
tering technique. From these clusters we compute the three
dimensional position of each object and derive the coordinates of
a bounding box, which is then translated into the corresponding
points in RGB space. The defined patch is then fed into a
Convolutional Neural Network (CNN) for object recognition. We
also demonstrate that our region proposal method can be used
to develop novel datasets that are both large and diverse enough
to train deep learning models, and easy enough to collect that
users can develop their own datasets. Lastly, we validate the
resulting system through a preliminary analysis of the accuracy
and run-time of the full pipeline. All source code is available
online.

I. INTRODUCTION

As the field of robotics advances, and personal robots that
assist users in their home and work environments become more
prevalent, it will be necessary to extend a robot’s autonomy
to include more advanced cognitive reasoning and improve
abilities in highly dynamic environments. To do so, the robot
will need to have knowledge of many of the same physical
attributes of the world that a human does. One such important
aspect is the ability to recognize and localize objects. Through
this knowledge, a robot can make informed decisions in
achieving tasks like intelligently searching for an object in
a novel environment, cleaning a room or retrieving an object
for a human partner.

The problem of object detection is not unique to robotics.
In computer vision it is used to solve problems such as
automatic caption generation [10] and automatic tagging of
shared social pictures. However, it is often the case that
techniques used in the two communities are distinct from
one another. One main reason for this is that the desired
and available sensor information is frequently different–in

computer vision, systems are usually limited to the RGB space
while solving problems in robotics generally requires depth
as an additional, or primary, modality. The requirement of
depth information often necessitates an additional sensor (with
a few notable exceptions [14, 19]), which in turn requires
a potentially difficult calibration and sensor fusion problem.
For this reason, we frequently see methodologies in the two
communities that parallel each other in purpose, such as object
recognition, but are divergent in technique. However, due to
the rise of RGB-D cameras like the Microsoft Kinect [24],
robotics researchers have access to sensors that provide both
color and depth information in a single device. These cameras
can be easily calibrated (up to a level of tolerance) and
aligned through a single transformation defined by the static
configuration of the two integrated sensors.

In this paper, we propose a novel method for object detec-
tion that makes use of both the depth and color modalities
of RGB-D sensors to recognize and localize objects in real-
time. We focus specifically on table top environments as many
manipulation tasks take place in this type of configuration.
Our approach solves the localization and recognition tasks
independently–the former through an exploitation of the ge-
ometry of the scene, and the latter with state-of-the-art deep
learning methods.

We begin by discussing related work in Section II and
then present our approach in detail in Section III. We also
discuss how our region proposal method can be used for
data acquisition and developing novel datasets in Section IV.
Finally, we describe an experimental validation of our system
in Section V and discuss the success of our approach and
future direction in Section VI. We conclude in Section VII.

II. RELATED WORK

From a computational perspective, object detection is a
two part problem. (1) Where is the object? and (2) What is
the object? The long-standing baseline approach in computer
vision is known as a sliding window. In this technique, each
patch of size (m,n), from an image of size (M,N), is fed
through an object recognition model. The concept is that,
while this approach may be inefficient, it maximizes recall by



Fig. 1. High-level step-through of our object detection pipeline. From left to right : We use an RGBD camera to capture color and depth information about
our scene. We then exploit known geometric properties to compute a bounding box and 3D position for each visible object. The bounding boxes are then
translated to RGB space using the static transform defined by the position of the two sensors in the camera. These patches are then fed through a trained
CNN for object recognition. The output is a class label and 3D position for each object in the scene.

ensuring not to skip any possible object locations. To account
for scale the same process is repeated over an image pyramid.

More recently, as interactive systems have become more
popular [2] there has been an increased focus on the efficiency
of object detection systems. The most common way to improve
the run-time of the system is to intelligently reduce the
number of candidate regions that are run through the object
recognition model. New approaches focus on novel techniques
and methods for producing region proposals. For example,
Girshick [6] use multi-layer segmentation to produce region
proposals at different positions and scales, while Szegedy et al.
[21] train a neural network to predict segmentation masks and
Zitnick and Dollár [25] use edge detections. Hosang et al.
[8] provide a comprehensive comparison of region proposal
techniques in the computer vision community. By reducing
the number of candidate regions, one is able to perform a
more efficient search through position, scale and orientation.
These techniques greatly reduce the computational burden
when compared to an exhaustive sliding window approach,
however they often still require expensive systems and GPUs
to train and run. For example, Fast R-CNN [6] has proven
very successful, yet using this approach on a 640 x 480
image with a Core i7 laptop with a mid-tier GPU (nVidia
GeForce 860M), the full pipeline takes about 0.75 seconds per
image. One reason for this is that the segmentation algorithm
produces between 1k and 10k proposals per image depending
on the quality mode parameter. To increase the speed of this
system, Ren et al. [16] extend Girshick’s method to a model
called Faster R-CNN, which uses a separate neural network
to produce object proposals, decreasing the run-time to about
0.2 seconds per image. Of note this approach still requires
significantly more training data than our proposed method.
Additionally localizing an object in the 2D plane does not
fully solve the problem for robotics applications when the
three dimensional location is equally as important as correctly
recognizing the object.

There is also related work from the robotics community in
3D object detection. Early approaches are similar to pre-deep
learning methods in the vision community; namely, they focus
on developing hand-crafted features in the point cloud space.
Some examples include local features such as the histogram-
based Fast Point Feature Histogram [17] and Signature of
Histogram of Orientations [23], as well as global features such
as the Viewpoint Feature Histogram [18] which also takes the
viewpoint into account. Tang et al. [22] describe a similar
segmentation approach to our own, however the recognition is
again done in the point cloud space by comparing features to
learned object models. The approaches mentioned here work
relatively well, however they rely on hand-crafted features and
no single approach has found the type of success or wide-
spread adoption that Convolutional Neural Networks have
found in the image space [13].

More closely related to our own work, researchers have
begun to look at other methods for combining the RGB and
depth modalities in solving the object detection problem. Song
and Xiao [20] describe a three dimensional version of the
sliding window approach in which they fit 3D regions to
learned CAD-based object models. Dahan et al. [4] describe
a method for computing region proposals by segmenting the
input image using information from both the color and depth
channels. Gupta et al. [7] and Couprie et al. [3] similarly
describe methods for including depth during segmentation and
they also augment the standard vision approach by including
the depth map as another input channel in training CNN
model. The main difference between these works and our own
is that we explicitly generate region proposals in the point
cloud space based on geometric constraints which produces
significantly fewer candidate regions.

Lastly, Pillai and Leonard [15] present a robotic recogni-
tion system that incorporates multi-view object proposals and
efficient feature encoding methods to solve a similar problem.
In particular the researchers develop a SLAM-aware system



that incorporates a detection model to improve robotic object
recognition. However, again, this work is distinct from our
own as it performs the recognition in the point cloud space.

III. OUR APPROACH

Our approach leverages both RGB and depth sensing modal-
ities in a single object detection pipeline. In this work we
focus specifically on detection in a table top setting, a common
environment for assistive manipulators and particularly useful
to researchers in laboratory settings. We take inspiration from
the computer vision community and develop a novel region
proposal method, however, our technique is rooted in robotic
perception and makes use of three dimensional point cloud
data. To do so, we exploit the geometry of the environment
to produce a minimum set of region proposals as described in
Section III-A. We then translate our candidate regions from
three dimensional bounding boxes into their two dimensional
representation in the image plane as described in Section III-B.
This image patch is then fed into a CNN for classification as
described in Section III-C.

A. Object Localization

Our object localization method is detailed in Algorithm 1.
This algorithm simultaneously computes a bounding box, B,
and the three dimensional position, P, of each object in the
table top scene. The localization method capitalizes on known
geometric properties of the table to reduce the computational
burden and produce highly reproducible results.

The input to the algorithm is a point cloud, C, which we
then downsample (Line 2). We choose a reasonable sampling
parameter, α = 0.1, to ensure coverage and speed. An optional
step to further reduce the computational burden is to also run
the point cloud through pass-through filters parameterized by
the geometry of the table top (Line 3). Our experimental results
in Section V use this step. We can further remove any points
belonging to the table top itself through the use of a RANSAC
filter (Lines 4–5), where T is the point cloud representation
of the table. A Euclidean clustering algorithm is run on the
remaining points to discover continuous objects in the scene
(Line 6). We can then compute a bounding box B around each
object in the set of clusters o ∈ O by finding the upper left, U ,
(Line 9) and lower right, L, (Line 10) corners of the cluster
o. We also compute the three dimensional position P of an
object by computing its centroid (Line 12).

Similar to other model-free segmentation approaches, a
benefit of our method is that the region proposal algorithm
does not require learning a model from a large dataset. Instead,
we make use of the geometry of the scene to develop candidate
object locations. This approach has the added benefit of
significantly decreasing the number of region proposals when
compared to other methods. That is, for each object in the
scene we propose only a single region by using the physical
properties of the object to account for both position and scale.
Our method is particularly well suited for our problem domain
as a vast number of manipulation objects are easily clustered

Algorithm 1 Geometric Region Proposal
1: Given Point Cloud C, optional : table dimensions
2: C ← downsample(C,α)
3: optional: C ← passthrough(C, table dimensions)
4: Tinliers ← RANSAC(C)
5: Toutliers ← C − T
6: O← Cluster(Toutliers)
7: Init B← ∅,P← ∅
8: for o ∈ O do
9: U ← (xmin, ymax, zmax)

10: L← (xmax, ymin, zmax)
11: B ∪ (U,L)
12: P ∪ centroid(o)
13: return B,P

due to their shape and size, particularly in uncluttered environ-
ments. Another benefit to computing the region proposals in
the depth modality is that our localization of the object is very
accurate [11]. For example, in our experiments the table was
one meter wide, indicating a maximum error of approximately
6mm.

B. Translation between Depth and RGB space

The next step in our object detection pipeline is classifying
each proposal region. We choose to perform the classification
in the image space due to the demonstrated accuracy and
expressivity of deep learning methods. Therefore, we must
translate the bounding box from the depth frame into the image
frame. The coordinates of the bounding boxes in these two
modalities are not directly aligned due to a physical offset
in the sensor, however we can compute the transformation
between the two [9].

To transform the bounding box in depth space to its rep-
resentation in RGB space, we can begin by representing the
RGB-D sensor as a pinhole camera. Under this assumption,
each point in the depth space (x, y, z) ∈ R3 and each
point in the image space (i, j) ∈ R2 are mapped into their
homogeneous coordinate definitions, (x, y, z, 1) and (i, j, 1),
respectively. We can then define a projective relationship
between the two representations based on the intrinsic and
extrinsic parameters of the camera as seen in Equation 1.i

j
1

 =

fi 0 ci
0 fj cj
0 0 1

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3



x
y
z
1

 (1)

In this equation the first matrix represents the camera’s
intrinsic parameters and describes a transformation between
the optical center of the camera and a given point in the
image frame. Specifically, fi, fj represent the focal length in
pixel space and ci, cj represent the physical offset between
the origins of each frame in pixel space. The second matrix
represents the camera’s extrinsic parameters and describes a
transformation between the position and orientation of the
depth- and RGB-cameras. These are defined by the sensor



Fig. 2. Top row : Example data captured using our object localization
procedure with multiple orientations. Bottom row : Example output of object
detection pipeline with multiple positions.

hardware and are often both readable and tunable using
the associated driver (the values used in our implementation
are included in the open source code). Through the use of
Equation 1, we can therefore translate each bounding box in
the point cloud to a bounding box in the image space.

Until this point, the bounding box we have computed
tightly constrains each object in the scene, however, for the
recognition portion of our pipeline it is useful to have a border
around the object itself. This is because most image based
recognition networks are trained with patches that include
a border around the object of interest. For this reason, we
slightly expand the bounding box associated with each object.
The size of the border can be tuned (in our work, we expanded
the border by 40%), however the same parameters should be
used during training and testing.

C. Object Recognition

The final step in our object detection pipeline is recognition
which we solve using a Convolutional Neural Network. Each
region proposal is extracted from the full image, scaled to the
input size of our trained neural network and classified.

The network architecture we used in this work is as follows.
The input layer is connected to 3 sequences of Convolu-
tional filters with max pooling and ReLu activation functions.
This sequence is followed by a final hidden layer of non-
Convolutional filters. The output layer is a learned soft-max
classifier.

Of note, at this point it is possible to use any pre-trained
model that includes the classes of interest. However, in these
experiments (Section V), we opt to train own network for two
reasons. First, our object set is not fully encompassed by any
widely circulated pre-trained network; and second, we opt to
demonstrate a secondary capability of our object localization
method; namely, data acquisition (discussed further in Sec-
tion IV).

IV. DATASET CREATION

A secondary application of our region proposal method is
data acquisition. Developing new datasets suitable for train-
ing deep learning models is normally a heavily human-time
intensive process. This is particularly important for robotics

Algorithm 2 Dataset Acquisition
1: Given object class labels, Ylabels

2: Init Xtrain ← ∅,Ytrain ← ∅
3: for ylabel ∈ Ylabels do
4: place object of type ylabel in the scene
5: B,P← Algorithm 1(object point cloud)
6: brgb ← Convert B to RGB space
7: x← image patch defined by brgb
8: Xtrain ∪ x
9: Ytrain ∪ ylabel

10: return Xtrain,Ytrain

applications, where there is a dearth of pre-trained recognition
models. Using our object localization method, researchers can
quickly and easily create labeled data for objects not com-
monly found in circulated datasets. Our approach is described
in Algorithm 2. This algorithm works by employing the use
of Algorithm 1 on the set of object classes important to a
researcher. By placing an instance of a known object class
in the view of the RGB-D sensor (Line 4), we can store the
streaming output of Algorithm 1 along with the user provided
label (Lines 5-7) in a supervised learning dataset. This process
is repeated for the full set of objects that a user is interested
in at multiple locations throughout the scene. As Algorithm 1
is very fast, it is possible to store a large quantity of data very
quickly.

While capturing example images, it helps generalize the
model to alter the position and orientation of object(s) thereby
providing multiple views of each class. It can also help to alter
aspects like lighting conditions and orientation with respect to
the camera. An example of the types of data collected via this
method can be seen in Figure 2. Source code for the dataset
acquisition process is also a part of the released package.

V. EXPERIMENTAL VALIDATION

A preliminary analysis of our system shows promising
results in the accuracy of both the localization and recognition
modules as well as in the speed of the system. Our recognition
model is trained on a dataset collected using the method
described in Section IV. The dataset consists of 11 different
object classes and 2180 total images, evenly split by class.

Fig. 3. Object set used to test detection pipeline. YCB Food: coffee can,
cheeze-it box, pringles can, tomato soup can, apple, orange. YCB Kitchen:
bowl, red mug. Other objects: orange bowl, orange mug, translucent bowl.



Fig. 4. Three example scenes with multiple objects. All objects correctly localized and classified, with the exception of the red mug in the far left image.
This object is not in our model. Future work will include training a large model with more classes including a dustbin class for objects that are not in the
dataset.

Eight of the objects are a selection from the YCB Object
Set [1] that are relevant to our interests, while the remaining
three objects are similar common household goods. We use
an 80/20% train/test split to train our model. The full object
set can be seen in Figure 3. The red mug was not included
in the training set and is only used to demonstrate a need for
improved handling of objects not in the training set.

Object Class Recognition Accuracy
Orange 100/100
Apple 100/100
Red Bowl 100/100
White Bowl 100/100
Blue Bowl 100/100
Soup 100/100
Pitcher 100/100
Pringles 100/100
Orange Mug 100/100
Coffee 100/100
Cheeze-it 100/100

TABLE I
RECOGNITION ACCURACY

We validate our approach with a pair of experiments that
examine how our method performs on streaming RGB-D data
unique from our training set. In the first experiment, the objects
themselves are the same physical objects as those used to
train our model, however we randomize each object’s position
and orientation in the scene. We placed one object in the
view of the RGB-D sensor at a time and collected count data
representing how many patches our model was able to label
correctly in the 100 frames. As seen in Table I, our model was
able to perfectly identify each class in our dataset. Example

Fig. 5. A coffee can, pringles can and pitcher, all correctly detected.

images of the variation in position and orienation in our testing
configurations can be seen in Figure 5. During each test, the
object in the scene was stationary to avoid the sensor detecting
our arms as objects.

Objects in Scene Recognition Accuracy
Red Bowl, Orange, Coffee 300/300
Soup, Translucent Blue Bowl 300/300
Pitcher, White Bowl, Red Mug 200/300

TABLE II
SCENE RECOGNITION ACCURACY

In addition to examining how well our pipeline worked
on single instances of each class in our dataset, we also
developed three scenes with multiple objects in different
arrangements. Using the same methodology described above,
we collected count data representing the number of correctly
labeled patches in the first 100 frames of each of the three
scenes. The results are displayed in Table II. In two of the
three scenes, our pipeline was again able to correctly locate
and identify all objects in the scene. In the last scene, we
accidentally included an object not in our training set, and
as such, the model was unable to correctly label that object
(the red mug). This does indicate the need for improved
methodology in handling classes not in our dataset. Example
output can be seen in Figure 4.

Our experiments were run on a Core i7 laptop with a mid-
tier mobile GPU (nVidia GeForce 860M). The system runs at
an average of 12Hz. On the same computer, with the same
size image (640 x 480), R-CNN [6], a competitive approach
in speed and accuracy, is able to run at an average of 1.33Hz.
This is a speed up factor of about 9x.

VI. DISCUSSION

We believe the presented paradigm is a promising direction
for practical robotic perception systems. The marriage of state-
of-the-art techniques from robotics and computer vision help
produce a fast and accurate object detection framework that
can be easily incorporated into any table top manipulation
task. It is a real-time system that does not require top of



the line hardware and produces competitive results. This
methodology is additionally useful for creating novel datasets
which suggests that this approach could be ideal for other
researchers and advanced users alike.

In this initial work, we do not provide a direct com-
parison to related methods using standard detection metrics
(e.g. mean average precision (mAP), repeatability of results,
scale changes and illumination changes Hosang et al. [8]) as
the datasets used for these comparisons often only include
RGB data [5]. In future work we hope to expand upon our
preliminary results by providing a comparative analysis on
an RGB-D detection dataset, such as the UW RGB-D Scene
Dataset provided by Lai et al. [12]. Additionally, we hope to
demonstrate how this approach can be used to solve the object
detection problem in cluttered environments and non-table top
scenes.

VII. CONCLUSION

In this paper, we describe and demonstrate a simple, and
fast object detection pipeline for table top manipulation tasks
using robot vision. The described system owes its speed
and computational efficiency to the minimal set of regions
proposed through unsupervised methods of analysis in the
point cloud space, and it’s accuracy and generalizability in
the recognition space to Convolutional Neural Networks. The
code is available online with an open-source MIT license at
https : //github.com/asbroad/geom rcnn.
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