
Supplementary Material for
Highly Parallelized Data-driven MPC for

Minimal Intervention Shared Control
Alexander Broad∗‡, Todd Murphey†, Brenna Argall∗†‡

∗Department of Computer Science
†Department of Mechanical Engineering

Northwestern University, Evanston, IL 60208
Email: alex.broad@u.northwestern.edu

‡Shirley Ryan AbilityLab, Chicago, IL 60611

I. IMPLEMENTATION DETAILS

Sampling-based optimal control algorithms are a classic
example of “embarrassingly parallel” computation. To com-
pute an optimal control strategy these approaches integrate
information from a large number of sampled trajectories
that are generated completely independently of one another.
Importantly, the expected optimality of the solution generated
through these techniques increases with the number of tra-
jectories considered. For this reason, massively parallelized
computer architectures (e.g., GPUs and FPGAs) are a natural
choice to improve the speed and efficacy of sampling-based
optimal control algorithms for real-time applications. We begin
this section with a brief introduction to how GPU architectures
differ from standard CPU architectures (see Section I-A). We
then describe what portions of our algorithm are parallelizable
and provide a visualization for the aid of the reader (see
Section I-B). Next, we discuss important features in the
scalability of our algorithm (see Section I-C). We then describe
alternative sampling strategies and detail how one could embed
a model the human-in-the-loop in the underlying distribution
(see Section I-D). Finally, we conclude with a discussion of
how one could extend our system-idenfication algorithm to
devices that exhibit hybrid dynamics (see Section I-E).

A. CPU vs GPU Architectures

Central processing units (CPUs) are designed for serial com-
putation that requires potentially complex control logic, while
graphics processing units (GPUs) are designed to perform
highly parallel multi-threaded computation. From a hardware
design perspective this means that CPUs have larger control
blocks, larger on-board cache and a smaller number of arith-
metic logic units (ALUs). In contrast, GPUs are designed
with smaller control blocks, less on-board memory and a
significantly larger number of ALUs (see Fig. 1).

GPUs are therefore well suited to solve arithmetic-heavy
computations in data-parallel scenarios such as we find in
the algorithm described in this paper. In the next section, we
describe key implementation details we consider to properly

Fig. 1: Pictorial representation of generic CPU and GPU
architectures [1].

take advantage of the GPU hardware and improve the speed
of our shared control paradigm.

B. GPU Implementation of MPMI-SC

In this section, we focus our description on how we achieve
instruction-level parallelism. Parallel computation devices can
also be used to speed up calculations through algorithm-
level parallelism, however, we note that our shared control
paradigm is already highly-parallelized at this level as it relies
on sampling-based techniques. To detail our approach, we first
reproduce our shared control paradigm in Algorithm 1.

The important insight from Algorithm 1 is that the for loop
on Line 3 is performed in parallel. That is, each control sample
(from a uniform distribution) is used to generate a potential
trajectory that the human partner may wish to take. In this
first study, zi is set to 0 for each trajectory. Each resulting
trajectory is therefore generated independently of the other
trajectories and is done so in parallel on the GPU. Here, we
note that the main part of the MPMI-SC algorithm happens
inside this initial for loop, suggesting that the vast majority of
the computation can be parallelized.

To implement this algorithm on a GPU, we rely on
NVIDIA’s CUDA API [1]. This platform refers to functions
as compute kernels which are launched in parallel blocks
of threads on an NVIDIA GPU. The order in which a
given thread runs on a block is not guaranteed, but CUDA
supports syncing functions to ensure that all threads have



Algorithm 1 MPMI-SC

1: procedure MPMI-SC(t, xt, uh)
2: ξ ∼ UMxN . unbiased control samples
3: for i in N in parallel do . forward predict system
4: tp, xp, safe← t, xt,True
5: while tp < t+ T and safe do . prediction
6: xp ← f(xp, ξ(i)) + zi . zi is Gaussian noise
7: safe = isSafe(xp) . system safe at xp
8: tp = tp + ∆t . ∆t is the timestep
9: end while

10: if safe = True then . safe over full trajectory
11: store ← ξ(i)
12: end if
13: end for
14: ur ← argmin(cost(ξ(i), uh)) ∀ ξ(i) ∈ store
15: return ur . signal is safe and adheres to MIP
16: end procedure

finished running before moving on to additional computation.
To improve the instruction-level parallelism of our code, we
follow the principles collected by Plancher and Kuindersma
[5]. In particular, key implementations features are:

• minimize memory bandwidth delays by reducing the
number of cross-device copies,

• minimize kernel launches through kernel fusion [2], and
• use shared memory when possible to allow fast data

access by all threads in a single block.

In contrast to Plancher and Kuindersma [5], we found
the cuBLAS optimizations beneficial during the forward pre-
diction step of our algorithm. This relates directly to our
choice of system modeling technique—the Koopman opera-
tor [4]. Unlike related work that uses complex representations
(e.g., Neural Networks) to perform sampling-based optimal
control [7], the Koopman operator can be represented as a
single matrix and can therefore forward predict the motion
of a system through highly optimized matrix-multiplications.
Additionally, we note that selecting the block size and number
of blocks has a large impact on the efficiency of the algorithm.
We use a principled formula to select the optimal number of
blocks based on the block size and the number of samples
(see code : https://github.com/asbroad/mpmi shared control).

Figure 2 is the data flow diagram used to guide our
implementation and it highlights the principles defined above.
Again, following the structure described by [5], we use the
CPU as a high-level controller to ensure correct serial pro-
cessing of the data and minimize the number of kernel calls to
reduce overhead. Notably there are only two copy operations
per iteration—once at the beginning and once at the end—to
maximize throughput. Within the main for loop, there is a non-
parallelizable while loop used to forward predict the state of
the system. This computation must be done in sequence as the
state of the system at each time-step depends on the prior state.
Importantly, however, this computation can still be carried out
on the GPU. Additionally, it only requires a single kernel call

Fig. 2: Pictorial representation of the data flow of
our algorithm on a CPU and GPU. This data flow
can be observed in the main callback (i.e., mpmi cb)
in the two main pieces of code in our supplemen-
tary material (i.e., shared control balance bot.cpp and
shared control race car.cpp).

per time-step and zero memory copies. To ensure fast safety
checks on the GPU, all relevant environmental information is
loaded into shared memory so all parallel threads have access
to the information. A final important implementation detail is
that we re-project (on the GPU) the state into the Koopman
space after each prediction iteration.

C. Scalability

In this section we discuss the scalability of our proposed
algorithm. The main factors we must consider here are:

• the number of control samples,
• the length of the receding horizon, and
• the size of the basis used to project the state into the

Koopman space.
The number of control samples defines (1) the set of

potential actions the user can choose from, and (2) the
number of trajectories we must evaluate for safety. The later
computation requires forward predicting the state of the system
over a receding horizon. While each trajectory must propagate
sequentially, the set of trajectories can be computed indepen-
dently in parallel on a GPU. The limiting factor therefore is
the number of blocks and threads on the particular GPU.

The length of the receding horizon also has a direct impact
on the run-time of our algorithm. This computation must be
performed in serial for each individual control sample. Serial
computation is less efficient on a GPU then on a standard

https://github.com/asbroad/mpmi_shared_control


CPU [1] which means that shorter time-horizons result in
faster overall run-times. However, time-horizons that are too
short will result in collision predictions that are not computed
early enough to be useful when intervening to improve safety.
The limiting factor here is the clockrate of the particular GPU.

Finally, the size of the basis used to project the state into the
Koopman space also impacts the efficiency of our algorithm.
The main effect of this variable is on the efficiency of the
forward prediction computation which requires a series of
matrix multiplications. It takes between O(n2.4) − O(n3)
to multiple two n x n matrices, depending on the matrix
multiplication algorithm used. These computations can be
done quicker on a GPU than on a CPU [6], but again, a larger
basis (and therefore larger matrices) require more powerful
GPU hardware. In this work we used an nVidia GeForce
GTX 860M, a low-power 2GB GPU, and therefore note that
the speed of this system can be further increased with more
powerful hardware.

D. Sampling Strategy

One implementation detail that could be altered based on
the goal of the shared control paradigm is the sampling
strategy used to generate the trajectory rollouts. For example,
if the human partner’s desired goal is known a priori, or
can be predicted, sampling-techniques from stochastic optimal
control (e.g., importance sampling) can be used to optimally
combine information from all control samples. A benefit of
the choice made in this first piece of work is that an equally
spaced discretization (or a uniform prior) allows us to provide
the tightest bound on the maximum deviation between the
user’s input and the applied control signal when we have no
knowledge of their desired motion. However, if knowledge of
the user’s behavior (or desired goal) is known, one could define
an alternative set (or distribution) from which to generate
samples, thereby embedding a model of the user in our MPMI-
SC algorithm.

E. System Modeling

One final comment on our implementation relates to the
method used for system identification. That is, a main chal-
lenge users faced in controlling the race car is that it can enter
a skidding state. This behavior was not explicitly modeled in
our system and therefore not accounted for by the autonomous
partner. It is likely we would see further improvements in
safety if we (1) explicitly considered the hybrid dynamics
of the system [3] or (2) incorporated a cost to penalize the
skidding behavior. To ensure safety in the real-world it would
be important to explicitly account for these properties when
implementing MPMI-SC on new systems.

REFERENCES

[1] NVIDIA CUDA C Programming Guide. Nvidia Corpora-
tion, 120(18):8, 2011.

[2] Jiřı́ Filipovič, Matúš Madzin, Jan Fousek, and Luděk
Matyska. Optimizing CUDA Code by Kernel Fusion:
Application on BLAS. The Journal of Supercomputing,
71(10):3934–3957, 2015.

[3] Aleksandra Kalinowska, Thomas A Berrueta, Adam Zoss,
and Todd Murphey. Data-Driven Gait Segmentation for
Walking Assistance in a Lower-Limb Assistive Device.
In International Conference on Robotics and Automation,
2019.

[4] Bernard O Koopman. Hamiltonian Systems and Trans-
formation in Hilbert space. Proceedings of the National
Academy of Sciences, 17(5):315–318, 1931.

[5] Brian Plancher and Scott Kuindersma. A Performance
Analysis of Parallel Differential Dynamic Programming
on a GPU. In International Workshop on the Algorithmic
Foundations of Robotics (WAFR), 2018.

[6] Vasily Volkov and James W Demmel. Benchmarking
GPUs to Tune Dense Linear Algebra. In International
Conference for High Performance Computing, Network-
ing, Storage and Analysis, pages 1–11. IEEE, 2008.

[7] Grady Williams, Nolan Wagener, Brian Goldfain, Paul
Drews, James M Rehg, Byron Boots, and Evangelos A
Theodorou. Information Theoretic Mpc for Model-based
Reinforcement Learning. In International Conference on
Robotics and Automation (ICRA), 2017.

https://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
https://link.springer.com/article/10.1007/s11227-015-1483-z
https://link.springer.com/article/10.1007/s11227-015-1483-z
https://nxr.northwestern.edu/publications/data-driven-gait-segmentation-walking
https://nxr.northwestern.edu/publications/data-driven-gait-segmentation-walking
http://www.pnas.org/content/17/5/315.short
http://www.pnas.org/content/17/5/315.short
https://agile.seas.harvard.edu/files/agile/files/gpu-ddp.pdf
https://agile.seas.harvard.edu/files/agile/files/gpu-ddp.pdf
https://agile.seas.harvard.edu/files/agile/files/gpu-ddp.pdf
https://mc.stanford.edu/cgi-bin/images/6/65/SC08_Volkov_GPU.pdf
https://mc.stanford.edu/cgi-bin/images/6/65/SC08_Volkov_GPU.pdf
https://www.cc.gatech.edu/~bboots3/files/InformationTheoreticMPC.pdf
https://www.cc.gatech.edu/~bboots3/files/InformationTheoreticMPC.pdf

	Implementation Details
	CPU vs GPU Architectures
	GPU Implementation of MPMI-SC
	Scalability
	Sampling Strategy
	System Modeling


