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Abstract
We propose a generalizable natural language interface that allows users to provide corrective instructions to an assistive
robotic manipulator in real-time. This work is motivated by the desire to improve collaboration between humans and
robots in a home environment. Allowing human operators to modify properties of how their robotic counterpart achieves
a goal on-the-fly increases the utility of the system by incorporating the strengths of the human partner (e.g. visual
acuity and environmental knowledge). This work is applicable to users with and without disability. Our natural language
interface is based on the Distributed Correspondence Graph, a probabilistic graphical model that assigns semantic
meaning to user utterances in the context of the robot’s environment and current behavior. We then use the desired
corrections to alter the behavior of the robotic manipulator by treating the modifications as constraints on the motion
generation (planning) paradigm. In this paper, we highlight four dimensions along which a user may wish to correct
the behavior of his or her assistive manipulator. We develop our language model using data collected from Amazon
Mechanical Turk to capture a comprehensive sample of terminology that people use to describe desired corrections. We
then develop an end-to-end system using open-source speech-to-text software and a Kinova Robotics MICO robotic
arm. To demonstrate the efficacy of our approach, we run a pilot study with users unfamiliar with robotic systems and
analyze points of failure and future directions.
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1 Introduction

As the desire for, and prevalence of, household robots
continues to grow, the ability of humans to communicate
particular goals and actions to their robot counterparts will
be an integral facet in their successful adoption. Similarly,
it will be important for users to be able to customize
properties of how a robot achieves a desired goal and
quickly interfere amid safety concerns. While recent work
has shown robotic manipulators capable of human-scale
household tasks such as unloading a dishwasher (Huang et al.
(2015)) and folding laundry (Maitin-Shepard et al. (2010)),
we must consider that simply initializing a robot with a
high-level goal will be insufficient for robotic solutions that
promise long-term utility. In particular, we consider that
the automation may not have all pertinent environmental
information (e.g. whether it is safe to move near another
object or whether the object currently in the arm’s grasp
is stable) when planning. To address these problems, we
propose a natural language interface that allows users to
interject corrections to the trajectory of a robotic manipulator
in real-time. This approach balances the strengths of a human
user (i.e. perception and general situational awareness) with
the strengths of the robot (i.e. control) to create a highly
adaptive and collaborative system. It also allows for online
customization to human preferences.

Natural language is an exciting modality for human-robot
communication for a number of reasons. One such reason
is that it provides an intuitive bridge between non-expert
users and their robot partners, allowing users to modify

the behavior of a robot without previous knowledge of the
system or programming experience. Additionally, as natural
language is a very expressive form of communication, users
can provide corrections with any level of detail or fidelity
that they choose. Natural language is an especially important
modality in assistive and rehabilitation robotics where a
user’s ability to physically interface with a robot is frequently
limited by injury or disability.

Within the domain of assistive and rehabilitation robotics,
there are a wide range of patients who retain control
of their vocal muscles but have difficulty using standard
human-robot interfaces that require a high level of fine
motor control (e.g. joysticks and/or buttons). This population
includes patients suffering from movement disorders, such
as Parkinson’s Disease or Multiple Sclerosis, and those
with spinal cord injuries that affect the low-cervical nerves
(C5-C8) or below, to name a few. Therefore, providing an
alternative, yet natural, means by which a user can interact
with their assistive robot is of great utility.
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A primary challenge in building a language-based
communication system for human-robot partners is the
translation from unstructured natural language to an
actionable representation in the robot’s world model. To
be flexible and robust, the robotic system must be able to
comprehend both qualitative and quantitative aspects of a
user’s utterance. However, achieving this goal from first
principals is a significant challenge due to the complexity of
natural language. The problem of how to best map linguistic
elements to their corresponding symbolic representations in
the real world is known as the symbol grounding problem
(Harnad (1990)). Solving this problem is important in
practice because it allows a robot to interpret how a spoken
phrase relates to the current environment and therefore to
improve its internal representation of the world.

Our solution is to limit the size and scope of the
language that the robot must understand to the space of
corrections. We begin with a robotic system able to generate
a preliminary trajectory to achieve a desired goal. The
initial assumption of the robot is that the user does not
have a strong preference in how the goal is achieved. We
then allow the user to provide natural language commands
to correct the behavior as they see fit. Therefore in our
approach, the robotic system is not required to comprehend
the full granularity of an initial utterance. Instead, we focus
on allowing the user to provide corrections that modify
essential attributes of the robot’s behavior such as the
speed, orientation of the end effector, or spatial constraints
throughout the trajectory.

By limiting the scope of language and actions that the
robot must understand, the challenge of grounding natural
language in the robot’s world view becomes significantly
more tractable. We achieve this goal by building a language
understanding model that efficiently characterizes the space
of corrections that a user may wish to apply. This model
allows us to then interpret natural language instructions as
constraints on the initial trajectory, which can be used to
modify and update the trajectory during run-time.

To date, natural-language corrections have seen limited
use within the field of robotics. Moreover, our motivating
and target application domain is assistive and rehabilitation
robotics, which at least clinically does not yet leverage
natural-language interfaces for operating assistive machines
that physically move in the world—in spite of the fact
that such interfaces could be incredibly useful for particular
patient populations.∗

This work aims to aid users of assistive robots by allowing
end-users without robotics expertise and with severe motor
impairments to use free-form natural language to adapt, on
the fly, the autonomous behavior of their robotic aides—
in response to environment dynamics or novel scenarios,
and also to best fit their personal preferences. The approach
moreover is general to a broad range of collaborative human-
robot domains, in addition to rehabilitation and assistance.

We begin with a discussion of related work in Section 2
followed by a detailed presentation of the scope of our
problem in Section 3. We then describe our approach in
Section 4 and our implementation of an end-to-end system
in Section 5. Finally, we evaluate our work in Section 6,
discuss the results and future work in Section 7 and conclude
in Section 8.

2 Related Work

This section overviews related literature in the areas of
speech-based interfaces for assistive robots, corrections pro-
vided to robot systems and natural language understanding.

2.1 Assistive Robots
The value of speech as an input modality for persons with
severe motor impairments to operate assistive machines has
been leveraged for use with robotic arms (Busnel et al. 1999;
Kim et al. 2009), robotic wheelchairs (Mandel and Frese
2007) and mobile manipulators (Volosyak et al. 2005). The
human typically uses speech to provide high-level goals or
teleoperation commands for the autonomy. For example,
in Volosyak et al. (2005) the autonomy on the FRIEND-
II assistive mobile manipulator actively queries the human
for task goals or execution assistance, and through speech
the user provides high-level (e.g. “pour a drink”) and low-
level (e.g. “gripper up”) instruction. Our work builds on these
ideas by allowing a user to interrupt the motion of an assistive
robot and provide natural language corrections to improve
the utility of the robot.

2.2 Corrections from Humans
Pose corrections from a human also are provided to assistive
robot manipulators, though typically through interfaces other
than speech. For example, in the KARES-II system, the
user indicates the target object with their gaze and visual-
servoing automation brings the object near user’s head,
who then fine-tunes position through a shoulder motion
interface (Bien et al. 2004). Pose corrections—translational
or rotational—are provided as static step amounts to the
MANUS manipulator on the FRIEND-II system, via EEG
selections from a graphical display (Luith et al. 2007;
Valbuena et al. 2007). Our approach tackles a broader scope
of corrective instruction than only direct pose corrections,
for example spatial relations (e.g “go over the box”) between
the robot and objects in the environment. Moreover, in our
paradigm corrections are provided verbally.

Outside of the field of assistive robotics, there are
approaches that provide explicit corrections, and rely on
tactile sensors that measure physical interactions. Schmid
et al. (2007) use small nudges on a robot’s end-effector
to define high-level goals and trajectory modifications.
Similarly, Argall et al. (2010) record finger swipes
on a touchpad that translates into iterative changes in
the orientation or position of their iCub robot. For a
survey of touch-based corrections, see Argall and Billard
(2010). Corrections also are provided through kinesthetic
demonstration as described in Niekum et al. (2015) and
graphical interfaces Argall et al. (2012).

∗The reason is largely historical, and a reaction to experiences 30 years
ago with commercial natural-language interfaces used to drive powered
wheelchairs, that created dangerous situations due to a lacking robustness to
variations in tone. Natural language systems have progressed greatly since
that time however. Commercial natural-language systems moreover are
already used extensively to operate non-mobile devices such as computers
and light switches.
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Figure 1. Example workflow. From left to right : (1) User issues initial command. (2) Arm begins to move and user recognizes
undesirable action. (3) User stops arm and provides desired correction to motion. (4) Arm begins moving again, this time with new
planning parameters. (5) Arm completes the task with user correction applied.

Implicit corrections to robotic manipulators are provided
as rewards within Reinforcement Learning paradigms—
where the robot essentially is told the (positive or negative)
value of a state-action pair, without being instructed
explicitly on what to do instead. For example, within the field
of Learning from Demonstration there are works that first
seed an initial policy with human demonstrations, and then
update that policy based on rewards (implicit corrections)
accumulated with experience (Kormushev et al. (2013);
Kober and Peters (2009)).

Corrections also can serve as a mechanism for the human
to indicate their preference. A related topic is the area
of learning user preferences over trajectories taken by
robotic manipulators. For example, Abdo et al. (2015) use
a collaborative filtering model to learn user preferences on
how best to organize objects in their environment. Jain
et al. (2015) learn user preferences by collecting a dataset
of positive and negative examples which then defines a
cost function used in a trajectory planning algorithm. Our
work differs in its use of natural language as the means
of communicating preference, and also in its focus on
instantaneous corrections rather than long-term learning.

2.3 Natural Language Understanding
There is a wealth of related work in developing algorithms
that improve a robot’s ability to understand natural language.
Specifically, there has been much recent work in using
natural language to specify task goals for mobile robots
and robotic manipulators. For example, the system presented
in MacMahon et al. (2006) parses natural language into a
set of high-level route instructions that represent knowledge
about spatial actions and layouts. Similarly, Matuszek et al.
(2013) learn a natural language-to-action model based
on example pairs of commands and their corresponding
control expressions. Hemachandra et al. (2015); Duvallet
et al. (2016) describe approaches for following directions
in partially observed environments, and Mei et al. (2016)
develop a neural sequence-to-sequence model to translate
natural language instructions to action sequences.

In related work, the Generalized Grounding Graph (G3)
Tellex et al. (2011b), a probabilsitic graphical model for
natural language symbol grounding that assumes conditional
independence of groundings across linguistic constituents,
demonstrates effective inference of paths in a state-action
space for controlling a robotic forklift. The Distributed

Correspondence Graph (DCG) Howard et al. (2014b)
extends this idea for efficient inference of motion planning
constraints from natural language utterances by assuming
conditional independence across both linguistic constituents
and parts of the symbolic representation. This transforms
the problem of finding the most likely grounding assuming
a known (true) correspondence variable to inferring the
most likely expression of correspondence variables in a
known space of symbolic constituents. Applications of
this model include inferring homotopic constraints for
mobile robot motion planning(Yi et al. 2016) and Linear-
Temporal Logic formulae for verifiable natural language
interaction (Boteanu et al. 2016). Recent extensions of DCG
include the Hierarchical Distributed Correspondence Graph
(HDCG) (Howard et al. 2014a) and the Adaptive Distributed
Correspondence Graph (ADCG) (Paul et al. 2016) which
learn approximate representations of the full graphical model
to achieve real-time performance. The HDCG is applied
in Barber et al. (2016) for inferring commands to guide a
mobile robot intelligence architecture.

Whereas these models focus on inferring trajecories or
constraints that define a behavior, our approach focuses on
modifying the robot’s behavior at execution time in the
context of robotic manipulators. Our approach leverages
the human’s perceptual and situation awareness abilities
to complete partially specified behaviors and unforeseen
environment dynamics.

3 Problem Definition
Our principal aim is to develop robots that can assist
people with everyday tasks. These machines are particularly
important for users with limited motor control as they
can restore lost ability and independence. We know that
end-users within the rehabilitation domain overwhelmingly
prefer to retain as much control as possible, however we
also know that many assistive machines are inaccessible
to those with severe motor impairments and paralysis—
precisely because of the control complexity in operating
these machines, and limitations in the control interfaces
available to these patients. There is an opportunity here for
robotics autonomy to offload a portion of the control burden
from the human, and to introduce natural language as an
interface for collaborative operation of these assistive robots.

In order for collaborative assistive robots to be a reality,
we need to develop natural interfaces and simple methods
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for users to control not only what their robot does, but how
it does it. Namely, as human-robot teams work together in
shared spaces, users need to be able to augment pertinent
characteristics of the behavior of their robotic counterpart.

However, there is the supplementary problem of how
to map a spoken command to the robot’s world model
when considering language as a method of human-robot
communication. Robotic manipulators in particular require
significant computation to appropriately control, due to the
number of variables that must be specified. Moreover, unless
the user is willing to define the full and exact trajectory in
joint space, it is likely that there are many, if not an infinite,
number of ways to ground the language in the environment.

To solve this problem, our approach builds a model that
is both effective at grounding utterances in the environment
and robot control, and also is efficient for a non-expert to
use in real-time. While previous research has focused on
using natural language as a method for providing high-
level planning goals to robotic partners, our approach
uses language as a means by which a user can provide
instantaneous corrections over a robot’s trajectory.

Through corrections, a human partner can impart relevant
contextual information as well as personal preferences to
their robotic counterpart. This may improve the robustness
and acceptance of the joint human-robot system. By
empowering the human to provide corrections, we aim to
addresses the questions of how users can customize their
robot’s behavior to their specific needs, and how the robot
system can provide robust operation for long-time assistance.
An example of the work flow can be seen in Figure 1.

4 Approach
The cornerstone of our approach is a generalizable natural
language understanding model that allows us to efficiently
model the space of corrections, and importantly, perform
inference in real-time. In operation, our approach first has
the robot devise an initial trajectory for a given goal, and
as that trajectory is executed, listen for corrections from the
user. Inference is performed on any observed utterances, in
order to interpret the phrase within the context of the robot’s
environment. This information is then used to apply the
correction, instantaneously, within a motion planner.

Our natural language model is based on a grammar and
set of features that specifically relate language constituents
to corrective actions along the robot’s trajectory. By using an
initial trajectory as a starting point and focusing on the space
of corrections, both the language understanding and motion
generation problems become significantly more tractable
from a computation standpoint.

In this section we first explain our natural language model
(Sec 4.1), then the space of corrections (Sec 4.1.1) and how
these corrections influence the motion planning (Sec 4.2).

4.1 Grounding Natural Language Corrections
In order to understand natural language corrections, it is
necessary to assign language to a meaningful set of concepts
(“groundings”) in the robot’s world context, a task known
as symbol grounding. These groundings can be perceived
objects, regions in the world, paths for navigation, actions
the robot can take, et cetera. For example, consider the

VB DT NN IN DT NN

NP NP

PP

VP

move the ball over the box

Figure 2. The parse tree for the robot instruction “move the ball
over the box”. Notice that in this parse, the prepositional phrase
“over the box” attaches to the verb phrase at the root of the
sentence instead of joining with the noun phrase “the ball.” Key:
verb phrase (VP), noun phrase (NP), prepositional phrase (PP),
verb (VB), noun (NN), preposition (IN), determiner (DT).

instruction shown in both Figures 2 and 3, “move the ball
over the box”. Both “the ball” and “the box” ground to
objects in the environment model, “over” grounds to a region
above the box object, and “move” grounds to an intended
manipulation action as constrained by the grounded region
and objects. We notice that the meaning of the utterance
differs when interpreted as an instruction or a correction to
the current behavior.

The environment model represents the physical workspace
of the robot that defines geometric, appearance and pose
information about constituent objects. Presented more
formally, the challenge of providing robots with the capacity
to understand natural language can be described as finding
the most likely (x∗ (t)) robotic behavior or action (x (t))
given the context of an environment model (Υ) and a
provided natural language utterance (Λ):

x∗(t) = arg max
x(t)

p (x (t) |Λ,Υ) (1)

In practice, this is a difficult maximization problem
because of the unrestricted nature of both the language and
the environment inputs. TheG3 model (Tellex et al. (2011a))
uses the parse structure of the instruction to generate a factor
graph that connects linguistic constituents (phrases: λi ∈ Λ)
to groundings (objects, locations, paths: γi ∈ Γ) and binary
correspondence variables (true/false: φi ∈ Φ) which indicate
a true or false association between a particular grounding
and language phrase. The most likely grounding then is
represented as:

Γ∗ = arg max
γi∈Γ

p (Φ|Γ,Λ,Υ) (2)

Both the language and correspondences are known (φi =
TRUE), and the model searches for the set of groundings
that maximize the product of factors in the graph. By
assuming conditional independence for phrases, given their
child phrase groundings (Γci

), equation 2 can be factorized
as shown in equation 3. Note that a child phrase refers to
any phrase that hierarchically contributes to another given
phrase; for example, the noun phrase “the box” in Figure 2
is considered a child of the prepositional phrase composed
of the text “over”. In this case, the factor evaluation for this
prepositional phrase would incorporate the distribution of
groundings expressed by its child phrases.
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move the ball over the box
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Figure 3. A DCG used to infer natural language corrections from the utterance “move the ball over the box”. The factors fij (black
squares) are functions of the groundings γij , language λi, correspondence variables φij , environment, and context used to
represent natural language corrections. Known random variables are represented as gray circles, unknown random variables are
reperesented as white circles, and the random variable for the environment, which connects to all factors, is not illustrated.

Γ∗ = arg max
γi∈Γ

|N |∏
i=1

p (φi = TRUE|γi, λi,Γci
,Υ) (3)

This approach provides an effective framework for
understanding robot instructions, but becomes increasingly
computationally demanding as the symbolic representation
grows. When the space of symbols is inclusive of sets in the
space of sets (e.g. constraints, objects), search for the most
likely set for each phrase is exponential with respect to the
number of constituents.

The DCG (Howard et al. (2014b)) alternatively searches in
the space of robot motion planning constraints. Probabilsitic
inference is made linear in respect to the number of
constituents by assuming conditional independence across
constituents of each set for each phrase. This model assumes
that the space of planning constraints that can be understood
is known and finite, bounded by the cartesian product of the
objects in the environment and the considerable relationships
between them. This effectively changes the problem of
inferring a solution from the continuum of robot actions to
one of formulating a robot planning problem that can then be
handed off to a dedicated planner. The model computes the
most likely association between the ith phrase (λi) and the
jth grounding constituent of the ith phrase (γij), resulting
in an assigned value for the correspondence between the ith

phrase and the jth grounding constituent of the ith phrase
(φij) (Eqn. 4). Note that, similar to the G3 model, each
factor evaluation is conditioned on the inferred groundings
of the child phrases (Γci ); because the DCG is searching
for an unknown correspondence variable, it also necessary
to incorporate the child phrase correspondences (Φci ).

Φ∗ = arg max
φij∈Φ

|N |∏
i=1

|Ci|∏
j=1

p (φij |γij , λi,Γci ,Φci ,Υ) (4)

The factor nodes in the graphical model are represented
by log-linear models with weighted binary features, as
shown in Equations 5 and 6. Feature weights (wk ∈
W ) are optimized from an annotated corpus of examples
via the Limited-memory Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS) algorithm.

Φ∗ = arg max
φij∈Φ

|N |∏
i=1

|Ci|∏
j=1

f (φij , γij , λi,Γci ,Φci ,Υ) (5)

f (φ, γ, λ,Γc,Φc,Υ) =
e
∑
k wkfk(φ,γ,λ,Γc,Φc,Υ)∑

φm∈Φ e
∑
k wkfk(φm,γ,λ,Γc,ΦcΥ)

(6)
We extend this model to consider corrections to actions

by incorporating the notion of context that describes
the current behavior or activity of the robot arm. It
is often necessary to incorporate the prior context to
resolve the meaning of a correction. For example, the
correction “by the handle” may be incomprehensible without
the symbols that describe the original instruction “pick
up the cup”. This prior context is used as additional
information during the update of the planning constraints.
Our approach is based on the DCG because our symbolic
representation for natural language corrections is composed
of sets of constraints, regions, and objects that allow for
conditional independence assumptions and we require real-
time performance. The maximum likelihood estimate of
the dsitribution of expressed groundings for the correction
are merged with that of the prior context to determine the
meaning of the utterance.

4.1.1 Space of Corrective Language In this work, we
examine the space of corrections for a robotic manipulator
along four dimensions. They include:

• The speed with which the manipulator executes a
trajectory (`1).
• The orientation of the manipulator’s end effector (`2).
• The position of the end effector relative to other

objects in the environment (`3).
• The gross contact point during grasping motions (`4).

We anchor these corrections to characteristics of the
robot’s motion. The first correction concerns the rate of the
trajectory execution (`1). The second concerns orientation
within the world frame (`2). The third concerns the location
of subgoals along the trajectory (`3). The final dimension
concerns the location of the final goal of trajectory (`4). An
example of each type of correction can be seen in Figure 4.
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Figure 4. Example trajectory corrections. Rows 1 and 2: Correction type `1 (speed). Rows 3 and 4: Correction type `2
(orientation). Rows 5 and 6: Correction type `3 (position). Rows 7 and 8: Correction type `4 (grasp).
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4.1.2 Symbolic Representation of Corrections We
define a space of groundings that provides coverage for
the space of natural language corrections. This symbolic
representation is composed of six different symbols that
can be decomposed into two categories as defined by
the type of semantic information they express. The
first category, environmental groundings, consists of three
symbols: objects, spatial relations and regions. The second
category, planner groundings, also consists of three symbols:
constraints, costs and goals. Each is defined in more detail
below.

Object, spatial relationship and region groundings are all
symbols that refer to the environment. Object groundings
represent a physical object and have specific properties
capturing model-relevant information about the object.
Specifically, each object has an associated type (e.g. “ball” or
“box”), pose in the world, list of type-specific landmarks, and
a unique identifier to disambiguate between objects of the
same type. The landmark information defines grasp locations
in grasping tasks and path preferences for pick-and-place
tasks. As an example, the noun phrase “the ball” would
ground to an object grounding of type “ball” with known
pose information (from the world model), a set of landmarks
and an unknown unique identifier. In the current system, the
specific landmarks are pre-defined based on the particular
object. Spatial relation and region groundings represent
relative spatial information. Spatial relation groundings
consist solely of a type: the noun phrase “the left” would
ground to a spatial relation grounding of type “left”. Region
groundings combine spatial relation information with object
groundings: so, the noun phrase “the ball on the left” would
ground to a region composed of a spatial relation grounding
of type “left” and an object grounding of type “ball”.

Environmental groundings, however, are insufficient for
representing the kind of higher-level robotic planning
problem information expected from natural language
instructions, so we also incorporate symbols meant to
express information about the planning problem. Our model
uses constraint, cost and goal type groundings to express
relevant information which will constrain the planning
problem. Constraint groundings consist of a type, value and
an associated object grounding. The constraint type defines
the kind of constraint that is being applied to the action
(e.g. velocity, orientation), where the value is defined by
the value property. The associated object defines to which
object the constraint should be applied. So, the verb phrase
“slowly move the ball” would be expressed by a constraint
grounding of type “velocity”, associated object “ball” and
a low value that satisfies the notion of “slowly”. Cost
groundings represent preferences for different paths. Each
cost is composed of a type, an object and a landmark. In
this case, the type can either be a “reward” or a “penalty”.
The object property defines the object associated with the
cost, and the landmark indicates a preferred path relative
to the object. For example, the instruction “move the ball
over the box” would have an expressed cost grounding of
type “reward”, associated object “box”, and a landmark to
indicate the top of the box, thereby representing a preference
for the path of motion to pass over the top of the box. Goal
groundings represent desired goal information. A goal is
composed of a type (e.g. “grasp” or “place”), an associated

object and a landmark. The goal type defines the type of
action, the object defines the object associated with the
action, and the landmark defines a preferred location for the
action. For example, the instruction “pick up the box by
the top” would have an expressed goal grounding of type
“grasp”, associated object “box” and a landmark to indicate
the top of the box, thereby representing a desired goal to pick
up the box by the top.

4.2 Motion Planner: Riemannain Motion
Optimization (RieMO)

The resulting corrections can be fed directly into many
standard path planning approaches, especially optimization-
based motion generators that provide convenient interfaces to
shaping the robot’s behavior through costs and constraints.

Our implementation makes use of Riemannian Motion
Optimization (RieMO) (Ratliff et al. 2015), which provides
both a flexible interface to arbitrary smooth constraints
on the motion and an interface to shaping the geometry
of the workspace around obstacles to bias the way in
which the end-effector moves around them. We encode the
grounded constituents discussed above into the motion using
a combination of these two tools along with trajectory re-
timing to modulate execution speeds.

RieMO models motion optimization generically as a
constrained optimization problem of the form

min
ξ

T∑
t=1

∑
i

c
(t)
i (zi, żi, z̈i) s.t.

{
g

(t)
i (zi, żi, z̈i) ≤ 0

h
(t)
i (zi, żi, z̈i) = 0

(7)

where ξ = (q(t), . . . , q(t)) is a trajectory through the
configuration space C, and each z

(t)
i = φi(q

(t)) denotes
the configuration as represented in some task space Zi
defined by differentiable map φi : C → Zi. g and h are
differentiable functions defining inequality and equality
modeling constraints on the system. Function g, for instance,
includes joint limit constraints and obstacle collision
constraints to ensure the motions are physically valid, while
function h includes constraints for reaching the Cartesian
target, achieving desired orientations at the end-effector, and
shaping the approach behavior in the final half-second of the
motion. The task spaces may be the space of the end-effector,
various points on the body, or something more abstract
like a higher-dimensional geometric space representing
proximity to obstacles in the environment and the way those
obstacles warp their surroundings (Ratliff et al. (2015)). This
representation is general since any Riemannian geometry can
be represented as a map of this form. The optimizer uses
the Augmented Lagrangian algorithm to handle the more
complicated constraints on the end-effector orientation and
approach, along with barrier functions to handle the simpler
inequality constraints that prevent obstacle and joint limit
penetration.

Our work incorporates online corrections into the
RieMO framework. Responding to grounded constituents
commanding how to approach the object or how to move
around the object amounts to modifying the constraints
and workspace geometry of the problem and re-optimizing.
Speeding up and slowing down the trajectory is implemented
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by scaling the time-constant of the trajectory. Each correction
is described in detail next.

4.2.1 Position Correction We can control the behavior
of the end-effector as it passes by the object (`3) by
changing the way we represent the object’s geometry. The
obstacle itself is approximated as a spherical boundary
region around the true object for simplicitly, and the
workspace geometry around the sphere is represented using
cylindrical coordinates. The orientation of the cylindrical
coordinate system shapes how geodesics wrap around the
object thereby biasing the motion in a semantically relevant
way. Figure 5 shows examples of the wrapping behavior
of the workspace geometry for various orientations of the
cylindrical system. Shaping the workspace geometry in this
way directly encodes our intuition for what we mean by
passing “over” or “around” the object into the obstacle’s
surounding geodesic structure.

Figure 5. Sample trajectories (starting from a distribution of
points around the initial end-effector location) following the
natural gradient of an attractor to the target under a workspace
geometry biasing the end-effector to go over (left) and around
(right) the object.

Specifically, the cylindrical system is increasingly blended
toward an ambient Euclidean geometry to transition
smoothly to a Euclidean geometry away from the obstacle,
following the Latent Euclideanization / Globalized Local
Coordinates framework outlined in Ratliff et al. (2015).
Let φ : R3 → R3 be a cylindrical coordinate map defined
by φc(x, y, z) = (r, θ, z) with r =

√
(x2 + y2) and θ =

atan2(y, x). Assuming z points up, and defining α(x) to
be a smooth proximity function that is zero away from the
obstacle and approaches one close to the obstacle, then the
geometric map we use to bias the system to go “around” the
object is

ψ(x) =

[
α(x)

1
2 D

1
2φ(x)

(1− α(x))
1
2x

]
(8)

with x = (x, y, z) ∈ R3 and D = diag(10, 1, 1) (stretching
the radial direction). This map becomes the identity map
far from the obstacle (the lower block), but close to the
obstacle it increasingly stretches the radial direction of
the space orthogonal to the vertical axis so that distances
toward the object measure much larger closer to the object
(the upper block). Geodesics—shortest paths—through the
resulting mapped space are naturally curves around the
object, specifically around the vertical (z) axis of the
workspace. Biasing the motion to go above the obstacle is
implemented by rotating the coordinate system so that the

Figure 6. The MICO robotic arm. In real hardware (left) and
simulation (right).

cylindrical axis aligns with the forward pointing axis of the
workspace.

4.2.2 Orientation Correction To control the orientation
of the end-effector during flight (`2), we add equality
constraints to the end-effector’s vertical axis (specifically,
the x-axis) to remain parallel to the workspace’s z-axis.
During the approach to the obstacle we add additional
shaping constraints as a function of the desired approach
direction â (a normalized vector):

1. Pass-through a point p = xg − βâ for β > 0 in units
of meters, where xg is the end-effector goal.

2. Constrain the end-effector frame to align with the
approach direction and vertical workspace orientation
during the approach from p to xg .

3. Penalize the end-effector velocity at the passthrough
point p as well as the acceleration to slow down
smoothly in preparation for the final approach.

4.2.3 Speed Correction We represent the motion plan
as a kinematic Linear Quadratic Regulator (LQR) around
the local optimum encoding the problem’s second-order
information. Querying the LQR by rolling out a trajectory
from a given start position and velocity approximates
resolving the problem from that point since the LQR encodes
the full solution to the problem’s quadratic approximation.
Therefore, to speed up and slow down the trajectory (`1),
we rescale time variable of the LQR, itself, and requery
the trajectory from the robot’s current position and velocity
state. That automatically implements smooth speedup and
slowdown transitions to when moving to a new timescale.

4.2.4 Grasp Correction To account for modifications in
the desired contact point during grasping (`4), we can simply
modify the target position and orientation. Additionally, to
account for the geometry of the object, we constrain the
approach direction to be perpendicular to the grasp point.

5 Implementation
Here we provide details our end-to-end implementation
on an assistive manipulator. We employ a MICO robotic
arm, a 6 Degree of Freedom (DoF) robotic arm from
Kinova Robotics with a 2-finger gripper (Figure 6).
The implementation of our language model is based on
an adaptation of the open-source Human to Structured
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Correction Description of First Video Description of Second Video
Speed* Move banana from right to left slowly Move banana from right to left quickly
Speed* Move baseball from right to left slowly Move baseball from right to left quickly
Orientation Move cup from right to left while spilling Move cup from right to left without spilling

contents contents
Orientation Move wine glass from right to left while Move wine glass from right to left without

spilling contents spilling contents
Spatial constraint* Move apple from right side of the box Move apple from right side of the box to left,

to left, go above box go behind box
Spatial constraint* Move baseball from right side of the box Move baseball from right side of the box to

to left, go above box left, go behind box
Grasp point* Pick up the cup from the handle Pick up the cup from the side opposite the handle
Grasp point* Pick up the teabox from the side Pick up the teabox from the top

Table 1. Description of videos shown to participants on Amazon Mechanical Turk to gather training data for our language model.
Video pairs marked with a * were shown to participants in both possible orders, as we expect users may want to express
corrections in both directions along that dimension. The orientation examples were only shown in the direction indicated as we do
not expect users to intentionally ask a manipulator to rotate while it moves.

Language (H2SL) software package,† which allows us to
convert free-form text input to its corresponding structured
language grounding in the robot’s environment. The
groundings in our model represent desired modifications to
the trajectory planning as explained in Sections 4.1.2 and
4.1.1. In this application, our symbolic representation for
natural language corrections is sufficiently small for real-
time performance with the DCG; however, we could also
employ the ADCG or HDCG for scenarios in which the
symbolic representation becomes sufficiently complex.

Training data for the language model was gathered using
Amazon Mechanical Turk (AMT),‡ an online crowdsourcing
platform used extensively by roboticists in the last few years
for participant recruitment (Tellex et al. (2011b); Sorokin
et al. (2010)).

Using AMT, we present participants with pairs of videos
that show the MICO robotic arm performing the same task
with one significant modification to some characteristic of
its trajectory. We then ask the subjects to describe the
main difference between the two videos, using language that
describes the variation as a correction. That is, how would
one best communicate to the assistive machine how to alter
the path in the first video to achieve the path shown in the
second video. Table 1 describes the videos that make up our
training examples. In total, there were 14 pairs of videos.

In total 77 AMT participants contributed 280 labeled
examples. We added to this dataset 24 examples gathered
during an initial study with three members from our lab. We
analyze the resulting responses to remove data that either
wasn’t appropriately worded as a correction or was a repeat
of previous responses. This resulted in a total of 31 training
examples. Our corpus was comprised of 100 phrases and an
average of 3.23 phrases per example.

6 Evaluation
In this section we evaluate the full end-to-end system.
The entire framework involves many complex hardware
and software components, which include speech-to-text
software,§ a natural language understanding model (Sec 4.1)
trained on Amazon Mechanical Turk data (Sec 5), the motion

generation module that adapts online to corrections (Sec 4.2),
and the MICO robotic arm. The system is implemented on
real hardware, and operates in real-time. We first analyze the
language model in Section 6.1 and then assess the current
state of the full system with a pilot study in Section 6.2.

6.1 Language Model
We evaluate our model on the training dataset along similar
metrics to those proposed in Howard et al. (2014b). First,
we perform all possible combinations of leave-one-out cross-
validation on our model. Using this approach, we correctly
infer the constraint in 16 of the 28 variations. In each case
where the held-out example was incorrect, we find the error
was due to a word not existing in our training set for that
test. The only exception was one case where the correct
grounding was expressed in addition to an erroneous margin
constraint. Additionally, in cases where the model suggested
the incorrect inference, it was never completely incorrect—
that is, the correct semantic information was expressed for
all leaf phrases (no children) with known words.

We also report the average runtime of correction inference
using our DCG. We note that the average runtime is near one-
fiftieth of a second as reported in Table 2.

Run-time
Test Data 0.0236 +/- 0.01
Train Data 0.0253 +/- 0.0005

Table 2. Average runtime of constraint inference in seconds.

†https://github.com/tmhoward/h2sl
‡https://www.mturk.com/mturk/welcome
§Speech-to-text software was used during development of the system, but
replaced with a command line interface during the pilot study to reduce
external sources of error during evaluation. During development, speech
recognition was incorporated through using a javascript library¶ which was
connected to the rest of the system through roslibjs, part of ROS Web Tools
(Toris et al. (2015)).
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6.2 Pilot Study
Here we report on a pilot study with novice users, which not
only serves to demonstrate the real-time operation of the end-
to-end system, but also allows us to analyze strengths and
weaknesses of our approach. Additionally, we use this study
to gather user feedback in preparation for a subject study by
candidate end-users with motor impairments.

6.2.1 Study Protocol The study consisted of five par-
ticipants without motor impairments recruited from the
staff, students and visitors of the Rehabilitation Institute of
Chicago. It included all seven types of corrections defined in
Table 1. For each type of correction, we developed a specific
task that was described to the user in simple language (e.g.
“move to the other side of the block”).

Users triggered a correction by verbalizing “stop”, and
then described the intended correction using free-form
language. If the correction provided by the user was
successfully parsed and grounded in our model, it was
then passed to the motion planning algorithm as a set of
constraints which were used to update the trajectory (see
Section 4.2). If our model was unsuccessful in parsing or
grounding the user’s language, the planning parameters were
not updated and the MICO would continue along its initial
trajectory.

For each type of correction, this procedure was repeated
until either (1) the user provided language that was
successfully parsed and grounded or (2) a maximum of 3
attempts. In between unsuccessful attempts we asked users
to modify their phrasing to try and help the robot understand
their correction.

The following is an overview of the protocol used in each
trial:

• Pre-Trial: Users were told the initial command for
the given trial. For example, “pick up the box.” They
were then shown a pair of videos from the set used to
produce the training data. The first video demonstrated
how the MICO planned to solve the task, and the
second video demonstrated a modification to that plan.
Users were asked to come up with language that
describes how to correct the behavior of the real arm
to better match what was demonstrated in the second
video. This approach was taken to reduce bias in the
user’s free-form language.
• Initialization: The MICO was initialized with the goal

described to the user in the pre-trial phase.
• Recognition of undesirable behavior: Once the arm

began to move, the user was free to choose when to
stop the motion in order to apply a correction.
• Correction: The user described their desired correction

with the language of their choosing.

Each trial was executed with a distinct set of initial
conditions—in particular, the starting configuration and
environment are specific to each task. Each scene is simple
and intended to place specific focus on the type of correction
desired by the user. The initial configuration of the arm is
the same in the speed, orientation and position dimensions,
and the arm starts on the right side of the workspace.
In the grasping trials, the arm is initialized directly in

front of the base to maximize the available configuration
space for manipulation tasks. Correction dimensions that
do not necessitate the presence of objects, such as the
speed and rotation dimensions, are unobstructed. Those that
do require an object, such as the position and grasping
dimensions, include a single object so as not to distract
from the participant’s perception of the interaction. Example
initializations can be seen in the far left column of Figure 4.

An example of this workflow can be seen in Figure 1.
In each experiment, we record the following data—the
initial planned trajectory, the user utterance, the updated
planned trajectory accounting for the user input, whether
our language model can parse the user input, whether our
language model can ground the input, and whether the
grounding matches the desired update. At the end of each
trial, we also asked the user for feedback on the language
understanding, the motion generation and the speed and
responsiveness of the full system.

6.2.2 Results We analyze the results by noting how far
along the processing pipeline users were able to get in each
trial. A successful trial involves (1) parsing the user input, (2)
grounding the user input, (3) ensuring the grounding matches
the desired correction, and (4) updating the motion planner
with a new set of constraints based on the grounding.

The pilot study included a total of 35 full trials (5 users,
7 trials each). In this analysis, a full trial refers to the final
attempt for a given correction (either the furthest a user got
after 3 attempts, or the result of a successful attempt).

During our experiments, all 35 trials were successfully
parsed, after which point and 14 failed to ground (remaining
21 trials were complete successes). If we include all failed
attempts, we collected a total of 68 user inputs, zero of which
failed to parse, 40 of which failed to ground, 7 of which were
grounded incorrectly, and 21 of which were full successes.

6.2.3 Discussion of Results We analyze these results by
separating the failure cases from the successes. In particular,
we examine each point of failure and reason about areas of
improvement.

We first notice that zero of the attempts resulted in a failure
to parse. We can attribute the generalizability of this part of
the pipeline to our use of an open-source CKY statistical
parser.‖ The parser was trained on much larger datasets
(the QuestionBank and Penn Treebank datasets) than our
AMT dataset, which resulted in a robust system, particularly
for the reduced set of language we observed during our
experiments. In the future, the parser can be easily replaced
and further improved through extended datasets and more
modern approaches to parsing as described in Andor et al.
(2016).

When a user input was successfully parsed but our
language model failed to ground the utterance in the
symbol space, it suggests that our model does not cover
the full space of corrective language and that we either
need a more complete set of features or we need to
include more training data. Through further analysis, we
recognized that the majority of failures were due to a
dearth of training data related to two particular corrections

‖https://github.com/emilmont/pyStatParser
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dimensions (Rows 4 and 8 in Fig. 4). As a result, no
participant was able to successfully apply the desired
correction during the experimental trials that evaluated those
correction dimensions. This result clearly indicates the need
for a larger data collection when training the language model.
If we ignore these two tasks, totaling 10 full trials (2 per
user), we find that 21 of the 25 trials were successfully
parsed, grounded and applied to the planner based on the
user input. Additionally, of the remaining 4 trials that were
not able to be grounded from this reduced set of 25 tasks,
2 more would have been successful if we had the word
above in our training set. Unfortunately, all related data in
our training set used the word over instead of above. This
problem can be addressed in multiple ways, one of which
is to recognize synonyms and other related phrases through
word embeddings as described in Mikolov et al. (2013).
However, by addressing the primary cause of many of the
experimental failures-a lack of training data-we can also
hope to improve the systems generalizability to a variety of
different phrasings.

Figure 7. Example experimental result of ambiguous input from
a user that resulted in a grounding different from the user’s true
desire. In the initial trajectory the arm tries to pick the box up on
the side (left). In the desired correction the arm should pick the
box up from the top (middle). Instead, the correction provided by
the user (“over”) resulted in the arm moving above the box
without trying to grasp it (right).

When a user input was successfully parsed and grounded,
but the there was a mismatch between the grounding and the
desired correction, it could potentially point to the fact that
there is a conflict between the user input and training data.
Digging further into the experimental data, we see further
evidence that this is the case in 5 of the 7 attempts. In
particular, we find that 5 of the cases occurred in attempts
related to the desired correction displayed in Row 8 of
Figure 4. With limited training data, our language model
was unable to appropriately distinguish between when a user
wanted to pick up a box from the side or the top. In the
other 2 attempts where there was a mismatch between the
grounding and the desired correction, our analysis shows
that the user provided ambiguous input that could easily
be interpreted in the manner presented by our language
model. For example, in one experiment in which the user
was trying to correct the method by which the MICO picked
up a teabox, the user provided the correction “move over
box.” Our model grounded this statement to a cost symbol
representing the desire for the arm to move above the box
during its trajectory, as opposed to the desired grounding of
a goal symbol suggesting that the arm pick up the box from

its top. The resulting modification to the initial trajectory can
be seen in Figure 7. The desire still remains, however, to
account for ambiguous inputs, as the likelihood that a real
user would provide such an input when using an assistive
robot is quite high. We believe one interesting way to handle
this is to incorporate the initial command into our language
model. By building the task into the factor graph model, we
can reason about the desired correction based on the high
level goal and improve our ability to disambiguate user input.

6.2.4 User Survey Results Finally, after each full trial,
we asked the users to give us their impressions on (1) how
well they felt the system understood their commands, and (2)
how consistent the corrected behavior was with their desired
correction. To gather this data, the participants filled out their
responses on a 7 point Likert scale where a response of 1 is
low and a response of 7 is high. Unsurprisingly, we find a
strong correlation between the success of the system and user
satisfaction. When the system failed to ground and apply the
user correction, the mean and standard deviation of responses
to the three questions was as follows (1) µ = 1.15, σ = 0.36
and (2) µ = 1.15, σ = 0.36. When the system succeeded, the
means rose to (1) µ = 6.86, σ = 0.45 and (2) µ = 6.68, σ =
0.63.

7 Discussion
Previous research has shown language to be a good method
of communicating high-level goals to robot counterparts.
We have extended this prior work to the space of real-time
corrections, because we believe it will be equally important
for users to be able to customize how a robot achieves the
desired goal—since this will allow users to impart personal
preferences on how a trajectory is planned and executed, in
addition to adding robustness. This is particularly important
when interacting with a robot that has complex control
dynamics in unknown environments.

Another valid approach is to define a pre-specified
language structure (Shimizu and Haas (2009)) that can be
taught to the user in order to issue their desired correction.
However, this approach greatly limits the generalizability
of the system. Beyond the addition of a required learning
phase, we believe that relying on a fixed-structure language
interface will reduce the acceptance of these systems by users
as minute mistakes in phrasing, or a poor understanding of
the interface, can render the full system unusable.

In future work we hope to show that, in addition
to instantaneous corrections, this method can also be
used to learn user preferences and contextual knowledge
over time. Furthermore, we expect to include additional
correction dimensions, including differentiating between
near-by objects, desired grasping strength and spatial
constraints on all sub-links of the robotic arm in addition to
the end-effector.

We also recognize a need to improve our strategy for
coping with grounding failures. In particular, we would
like to incorporate a measure of ambiguity in the inference
process to automatically recognize points of uncertainty.
If the model is then unsure of a particular inference it
can then re-initiate communication with the user to resolve
the ambiguity. An example of a dialog system like this is
presented in Tellex et al. (2013).
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We also do not address negative language. Negative
language, such as the correction “do not move the ball over
the box”, produces a more challenging grounding problem
and would increase the difficulty of natural language symbol
grounding. In future work we hope to specifically address the
problem of incorporating negative language into our model
for understanding natural language corrections.

Another modification we plan to incorporate in future
work is allowing users to decide whether or not they would
like to stop the robot before providing their correction. In
particular, we believe that there may really be two distinct
methods by which people would like to interact with and
provide corrections to their assistive device. In the first,
the user will stop the device, and provide the correction.
This type of interaction is likely preferential in scenarios
where the original action is dangerous (e.g. interaction with
another object) or not appropriate (e.g. moving a glass full
of liquid while rotating the wrist). In the second type of
interaction, we believe users would like to apply a correction
without stopping the device. This type of interaction is
likely preferential for quick modifications, like increasing
or decreasing the speed. This again highlights one of the
benefits of our planning approach, as the speed with which
a planned trajectory is executed can be modified without re-
planning by querying the trajectory with different dilation
factors as described in Section 4.2.

8 Conclusion
In this paper, we present a natural language interface
that allows a human user to correct the behavior of a
collaborative robot system at run-time. Our method improves
the user experience while simultaneously improving the
communication and execution of a user’s desired trajectory,
when compared to high-level goal driven approaches.

This work aims to aid users of assistive robots by
allowing non-experts to modify the behavior of their personal
robots to better match their preferences through a natural
language interface. Our target domain in particular is
assistive robotic manipulators used by persons with severe
motor impairments. In this paper we discuss a pilot study
used to gain insights into the viability of such an approach,
leading to a future full evaluation with end-users suffering
from a range of motor impairments.

By focusing on properties of previously planned
trajectories this approach also generalizes to other assistive
robotic devices such as mobile robotics. Additionally,
this approach allows us to focus on robust, long-term
behavior demonstrating the capacity for personal robots to
take corrective actions in response to spoken stimuli. We
believe our collaborative approach will improve human-
robot communication and aid in the adoption of assistive
robotic technologies.
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A Index to Multimedia Extensions
The multimedia extensions to this article are at: www.
ijrr.org.

Extension Media Type Description

1 Video

Demonstrates two experimental trials of
the described system which allows users
to provide natural language corrections
to alter the behavior of their assistive
robot.
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