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”You live and learn. At any rate, you live.”

- Douglas Adams, Mostly Harmless
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ABSTRACT

Generalizable Data-driven Models for

Personalized Shared Control of Human-Machine Systems

Alexander Broad

The theory of how humans and machines control and communicate with each other is at

the core of the scientific field known as Human-Robot Interaction (HRI). Researchers in this

sub-discipline of robotics are therefore particularly interested in developing methods to reduce

the inherent friction in this communication and control channel. Just as can be observed in the

analogous problem of collaboration between two human partners, solutions in this space require

a tight coupling between a human partner and an autonomous partner. A conceptual framework

that describes this exact relationship is known as shared control (SC). Shared control defines an

abstract link between a set of partners (often a human operator and an autonomous agent) that

are both responsible for providing control information to the same robotic device. This para-

digm is especially useful as a method of extending the physical capabilities of a human operator,

while simultaneously considering important constraints defined by the user and environment.

This dissertation is largely motivated by applications of shared control in the fields of as-

sistive and rehabilitation medicine. Therefore, this thesis develops shared control solutions that
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are designed specifically to improve, or restore, a human operator’s ability to control complex

mechanical devices. Example motivating systems include powered wheelchairs, exoskeletons,

and robotic manipulators. In addition to increasing a human operator’s capabilities, a partic-

ularly desirable attribute of any interactive system in assistive and rehabilitation medicine is

the acceptance, and enjoyment, of the human-in-the-loop. For this reason, the SC algorithms

described in this dissertation allocate the majority of the control authority to the human part-

ner, while the autonomous partner is mainly responsible for providing control information to

improve the stability and safety of the joint human-machine system.

The specific techniques described in this dissertation are motivated by the desire to gener-

alize solutions in shared control to generic pairs of human and machine partners, while simul-

taneously developing a decision making framework that is responsive to the individual human-

in-the-loop. To address this desire, this thesis introduces the notion of data-driven model-based

shared control (MbSC). Data-driven MbSC extends the efficacy of standard shared control sys-

tems to scenarios in which we do not have any prior knowledge of the system dynamics or the

human operator. Instead, data-driven MbSC relies on techniques from (1) machine learning to

gain an understanding of the joint human-machine system from observation, and (2) optimal

control (OC) to develop a control policy for the autonomous partner. The shared control sys-

tem then allocates authority to each partner to improve desired outcomes (e.g. task-success,

stability, and/or safety). Additionally, this dissertation describes data-driven techniques that

further personalize the interaction paradigm to the individual human-in-the-loop. The proposed

methodology uses a representation of the autonomy’s trust in the human partner’s control skill

learned from observation data. This data-driven metric is then used to modulate the control

authority granted to each partner in real-time. Taken together, the techniques described in this
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thesis describe a generalizable solution to the shared control problem that can be personalized

to the individual human-in-the-loop to improve the capabilities of the joint system.
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CHAPTER 1

Introduction

Robotics autonomy offers great promise as a tool by which we can enhance, or restore,

the natural abilities of a human partner. That is, in contrast to developing robotic technologies

that aim to replace human functionality, this thesis describes a class of autonomous agents that

are designed to collaborate with, and assist human beings in their quest to interact with their

environment. This assistance-based paradigm not only aims to improve the lives of human

partners, but offers an extremely practical foundation for the successful adoption of robotic

devices into modern society, as it is mirrors how mechanical systems have been used as long

as they have existed. Consider the variety of mechanical devices that have been developed to

help mankind explore the ground, air and space. Similarly, assistive walkers and wheelchairs

have been developed to restore lost, or limited, functionality to countless people in need. This

thesis posits that we can further improve the efficacy of mechanical devices in broadly assisting

human partners through the integration of artificial intelligence.

From a conceptual standpoint, the ideas in this thesis can be seen as intellectually descendant

from the work of Norbert Weiner and his colleagues [146]. In particular, this thesis addresses

questions that explore the fundamental relationship that describes how humans and machines

control and communicate with each other. However, the scope of our work is significantly more

narrow than this topic, which is considered an entire field of research at this point in time.

Instead, this thesis proposes directions for progress in a subfield known as shared control or
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shared autonomy, in which a human and autonomous partner both provide control information

to the same dynamic system.

In theory, shared control describes a general framework for improving the efficacy of generic

human-machine systems by incorporating an autonomous partner into the control loop of a me-

chanical device [5, 105]. The autonomous partner is designed to account for deficiencies in the

human partner’s control due to either the inherent complexity of the system, the required fidelity

in the control signal, or the physical limitations of the human partner. In essence, shared con-

trol can be used to further improve the efficacy of dynamic machines by offloading challenging

aspects of the control problem to an autonomous partner in a shared control paradigm. In doing

so, the human operator is freed to focus their mental and physical capacities on important high-

level tasks like path planning and interaction with the environment. This general framework

has the potential to provide great value in a wide range of application domains. For example, in

assistive robotics, shared control can improve a user’s ability to operate a powered wheelchair

and therefore regain lost autonomy and re-engage with the world [47]. The same concept can

be used to extend the efficacy of rehabilitative machines, like exoskeletons, that would other-

wise require significant supervision from a team of trained therapists [58, 67]. Broadening the

application domain even further, shared control can extend the effective range of search and

rescue robots, the safety of robotic surgery tools, and the ability of a human operator to control

complex ground and air vehicles.

The great promise of shared control then, is due to the generality of the framework. That is,

shared control defines a partnership relationship that can be used to improve a human’s ability to

operate complex dynamic machinery and accomplish challenging tasks, while simultaneously

improving the safety of the joint human-machine system. Beyond the constraint that the human
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and autonomous partners must both provide input to the same mechanical system, there are

few (if any) requirements of a shared control system [5]. Instead, this paradigm spans a wide

range of partnership relationships that range from human supervision to autonomous supervi-

sion, and everything in between (e.g., blending the human and autonomy’s control input [50]).

The particulars of a given human-machine partnership are therefore often defined based on the

individual pair of partners and/or the task they are trying to accomplish.

This thesis describes approaches to shared control that are inspired by devices designed to

assist people in their daily lives, and those that are designed to help people overcome physical

limitations due to either injury or disease. For example, in assistive and rehabilitation medicine,

powered wheelchairs, exoskeletons and robotic manipulators can be used as an aide for a human

partner who has severely diminished motor capabilities. This use case suggests a few key

desirable attributes that help guide the development of the different shared control frameworks

that are discussed in this thesis. For example, a growing consensus in the literature [53, 66,

71, 91] indicates that users of assistive devices prefer to retain as much control authority as

possible. Therefore, instead of developing methods that cede full authority to the autonomous

partner (e.g., Level 4 & 5 in SAE’s taxonomy of self-driving cars [3]), this thesis focuses on

methods that can dynamically adjust the level of assistance given to a human partner to account

for suboptimal user input that would otherwise destabilize, or endanger, the joint system.

A unique characteristic of the work presented in this thesis is that, due to the infinitely large

number of potential human-robot partnerships, the solutions we discuss require no a priori

knowledge of the mechanical system or the human-in-the-loop. Instead, this thesis describes a

series of generalizable shared control paradigms that rely on state-of-the-art techniques in ma-

chine learning to develop actionable representations of the system dynamics and human partner
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directly from data. The main impact of this contribution is that it greatly reduces the costs and

complexity associated with designing a novel shared control system for a given human-machine

system. As a result of the work discussed in this thesis, shared control can be used to improve

the efficacy of any assistive robotic device through simple data-collection and model learning.

To realize the above ideas in an assistive shared control paradigm, the following objectives

are put forth :

• Generalizable: The autonomous partner should be able to learn a model of an un-

known system’s dynamics from observation, and use that information to regulate it’s

motion and account for deficiencies in the human partner’s control.

• Personalized: The autonomous partner should be able to recognize important facets of

the human partner’s control skill during operation, and use that information to dynam-

ically allocate control authority in a personalized manner.

Together, these concepts describe a generalizable methodology for designing a personalized

shared control paradigm. To address these objectives, I outline the contributions of this thesis

below.

1.1. Main Contributions

The main contributions of this thesis can be summarized as follows :

• Novel data-driven methods for user modeling, which can in turn be used to improve

a human partner’s ability to operate complex systems through personalized, dynamic

autonomy allocation.

• The introduction of data-driven model-based shared control (MbSC) to the field. This

data-driven method for offline, and online, system identification results in models that
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can be used to generate autonomous control policies to achieve generic tasks, or adhere

to desirable constraints.

• Intelligent control allocation techniques that rely on data-driven models of the human

and machine partners to increase the control authority granted to the human partner

while simultaneously improving the skill, stability and safety of the joint system.

1.2. Dissertation Outline

The following chapters relay key works undertaken during my PhD and describe how the

results provide guidance for further exploration. This thesis begins with a description of re-

lated work and helpful background information in Chapter 2. This chapter also includes brief

descriptions of results from related experiments that address the objectives outlined above, but

that do not fully align with the main thrust of this thesis.

Chapter 3 describes a data-driven notion of the trust the autonomous partner has in an

individual human operator that is calculated based on the quality of the interactions between

a human and autonomous system. In contrast to prior literature, the described methodology

does not rely on task-specific metrics, and instead builds a model of the user’s understand-

ing of the system dynamics and control skill without a priori knowledge of the system, the

task or the human-in-the-loop. That is, the described measure of confidence is built upon a

control-theoretic foundation that rewards stable operation of the system to give more trusted

users additional control authority. The results of this study suggest that, through data-driven

methods, we can dynamically adapt a personalized interaction paradigm between a human and

machine to improve a user’s control without a priori knowledge of the specific user.
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Chapter 4 introduces the notion of data-driven, model-based shared control (MbSC) for

human-machine systems. This paradigm extends the state-of-the-art in shared control/shared

autonomy to scenarios in which we do not have a priori knowledge of the system dynamics. In-

stead, both the dynamics of the system and information about the user’s interaction are learned

from observation. This chapter describes the results of two human subjects studies. Both stud-

ies demonstrate that (1) expert knowledge of a system’s dynamics is not a requirement for

successful shared control, and (2) data-driven models of human-controlled dynamical systems

generalize across users. The studies also provide additional evidence that geometric signal

filters (e.g., MDA [142]) can be used to improve a human operator’s ability to safely achieve

pre-specified tasks, while systematically reducing the control authority of the autonomous part-

ner. A comparison of the two human-subjects studies finds even stronger effects when the

data-driven shared control paradigm is based on nonlinear (instead of linear) modeling and op-

timal control techniques. The second study also demonstrates the data-efficiency of the chosen

modeling technique, and the efficacy of data-driven MbSC in an online learning setting.

Chapter 5 extends the notion of data-driven, model-based shared control to situations in

which the user’s desired motion and/or goal is not known a priori. This chapter introduces an

autonomous partner that enforces safety and stability constraints without knowledge of a desired

task. The approach incorporates safety constraints through control barrier functions [11] that

penalize highly dynamic motion as well as actions that move the system towards potentially

dangerous environmental risk factors. When the system is in a safe portion of the state space

and the human partner provides safe control, the user retains full authority over the system.

However, in unsafe portions of the state space, the autonomous partner gains control authority

and returns the system to a safe state. The methodology described in this work combines the
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outer-loop stabilization technique described in prior work [27, 60, 142] with additional infor-

mation about the system and environment. Importantly, the high-level algorithm generalizes to

any dynamical system as the system model is learned from observation. Additionally, experi-

mental results suggest that this technique can be viewed as a training mechanism for the human

operator. That is, by constraining the motion of the system to known safe regions in the envi-

ronment, the human operator can gain experience controlling the system and learn new skills

without endangering the safety of either partner. Finally, additional analysis shows how the

same safety-aware shared control paradigm can be used in conjunction with Imitation Learning

to generate autonomous policies that recreate the behaviors demonstrated by the human-in-the-

loop. This idea is valuable as a method of bootstrapping a task-agnostic shared control paradigm

into one that incorporates task-specific information.

Chapter 6 continues to build on the idea of using data-driven, model-based shared control

as a method of improving a user’s ability to operate dynamic systems without a priori knowl-

edge of the system, the user, or the task. The algorithm detailed in this chapter allocates control

authority based on the user’s input and a prediction of the safety of the joint human-machine

system in the future, given a set of possible actions. This prediction is computed through tech-

niques that build on ideas in model-based reinforcement learning. That is, the autonomous

partner evaluates the safety of the joint system over a receding-horizon by analyzing predicted

trajectories that stem from a large sample of potential actions the user may wish to take at each

given moment. Importantly, these trajectories can be computed independently of each other and

therefore evaluated in parallel and in real-time. The algorithm then selects the control sample

that minimizes the impact of the autonomous partner, while remaining safe over a receding

horizon. Notably, this approach places an additional emphasis on the user’s acceptance of the
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shared control paradigm by explicitly maximizing the authority allocated to the human partner

at every instant to improve their sense of agency. The results of the described study show that

the shared control paradigm improves system safety without knowledge of the user’s goal, while

maintaining high-levels of user satisfaction and low-levels of frustration. To close the loop on

the ideas presented in this thesis, this chapter also describes how data collected during run-time

can be used to compute a model of the autonomy’s trust in the human operator’s control skill to

further personalize the influence of the autonomous partner.

Chapter 7 presents an analysis of the results of the main four studies presented in Chapters 3-

6 and highlights key takeaways. This chapter also describes limitations of the presented studies

and concludes with a description of future directions.
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CHAPTER 2

Background and Related Work

The following chapter provides relevant background information and details related work.

The background information is useful in understanding the theory and engineering-methods

proposed in this thesis. The related work is an overview of prior scientific innovations.

2.1. Shared Control of Human-Machine Systems

The work in this thesis is largely concerned with shared control systems. Shared con-

trol [105] is a concept used to describe how a human and autonomous partner communicate

and share control over a mechanical device. Shared autonomy [71] is a related term often used

to signify the incorporation of classical artificial intelligence technologies (e.g., model learning

and reinforcement learning), however, at the core, these two expressions refer to the same con-

cept. In this work, I will use the term shared control. From a birds eye view, shared control (SC)

explores the question of how automation can be used to adjust to, and account for, the specific

capabilities of a human partner. If done intelligently, and with appropriate knowledge of the

individual capabilities of each team member, SC can be used to improve the overall efficiency,

stability and safety of the joint system [89].

Shared control covers a wide range of interaction paradigms between a human and au-

tonomous partner. One key distinguishing feature is the difference between task-level and

signal-level SC [5]. In the former, a high level task is broken down into subtasks which are

then often handled separately by the human and autonomous partners [109]. In the later, both



30

partners are often required to provide continuous input to the same mechanical device. In this

case, control authority is dynamically allocated to a particular partner depending on the require-

ments of the task [105] or with respect to the safety of the system [89]. Another distinguishing

feature is whether the human and mechanical device are physically remote (e.g., controlled

through teleoperation) or co-located. The former is common in applications like search and res-

cue, where the environment is generally considered too dangerous for the human partner [96].

The later is common in applications like assistance and rehabilitation [21, 44], where the me-

chanical device is often explicitly used to help the human partner regain lost functionality [18].

Finally, the presence of feedback, whether visual or physical [97], is another standard distin-

guishing feature in shared control. This thesis contributes a series of shared control paradigms

that are designed for human-oriented applications (i.e., assistance and rehabilitation). In these

domains, we assume that both partners are capable of providing continuous control (i.e., signal

level SC) and that the human and machine are co-located, suggesting a primary focus on safety.

This thesis describes novel shared control algorithms that are well founded and viable even

without a priori knowledge of the system or control dynamics. This contribution is important

as it extends the efficacy of the described SC paradigm to a wide range of systems that are

inherently challenging to model using hand-engineered techniques. That is, the vast majority

of related work relies, either explicitly or implicitly, on known models of a given system’s dy-

namics and the user’s control influence to define a shared control paradigm. In this thesis, we

instead design SC algorithms that generalize to any pair of human and machine partners through

data-driven solutions that make use of modern techniques from machine learning. Addition-

ally, the described data-driven approach greatly reduces the engineering burden associated with

designing and implementing a shared control algorithm for a new pair of human and machine
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partners. In short, this thesis describes a generalizable methodology that can be used to define

shared control paradigms for unknown human-machine systems from simple data collection.

Given the flexibility of the general shared control definition, one could imagine many as-

pects of the problem that could be solved through data-driven methods. For example, if the

autonomous partner aims to improve the safety of the human-machine system, a real-time un-

derstanding of the environment is paramount. Data-driven methods have proven particularly

useful in analyzing perceptual information like scene understanding [30] and obstacle detec-

tion [137], which are important pieces of information when developing safe autonomous con-

trol policies. Similarly, if the autonomous partner is designed to improve a user’s ability to

interact with the environment (e.g., manipulation of table-top objects [28]), or navigate through

challenging portions of the environment (e.g., narrow doorways [47, 145]), the same perceptual

data can be analyzed to form models of human intent and improve task-recognition.

This thesis focuses on developing data-driven models to describe (1) the autonomy’s under-

standing of the human partner [32, 33], (2) the dynamics of the mechanical system [31, 32],

and (3) the autonomous partner’s control policy [27, 31, 32]. These three ideas come together

to form the basis of data-driven model-based shared control, a class of algorithms that extend

the efficacy of robotic assistance to any given human-machine partnership.

2.2. Data-driven Model-based Shared Control

One of the main contributions of this thesis is to introduce the concept of data-driven model-

based shared control [27, 31] (MbSC) to the field. This approach extends standard shared con-

trol paradigms to scenarios in which we have no prior information about the system dynamics

and user interaction schemes. The high-level algorithm relies on techniques that stem from
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model-based reinforcement learning and optimal control [24, 131]. That is, the key idea in

MbSC is to learn an explicit model of the system dynamics from observation data. This model

can be used for a variety of purposes such as system identification, intent prediction, and au-

tonomous control. In data-driven MbSC, we collect the necessary data from observations of

the human and machine interacting so as to capture important information about the human and

machine partners. This model is then integrated into an autonomous policy generation method,

and used to regulate how control authority is shared between the two partners.

Model-based shared control is therefore closely related to model-based reinforcement learn-

ing (MbRL), a paradigm that explicitly learns a model of the system dynamics in addition to

learning an effective control policy. MbSC extends MbRL to scenarios in which it is preferen-

tial to integrate control from multiple sources (e.g., a human and autonomous partner) instead

of relying on a fully autonomous solution. Early work in model-based reinforcement learning

includes Barto et al. [22] and Kaelbling et al. [76]. More recently, researchers have considered

integrating learned system models with optimal control algorithms to produce control trajecto-

ries in a more data-efficient manner [104]. These algorithms compute control through an online

optimization process, instead of through further exploration [22]. There are, of course, many

viable model learning techniques that can be used to describe the system and control dynamics.

For example, Neural Networks [149], Gaussian Processes [108], and Gaussian Mixture Mod-

els [79] have all shown great promise in this area. Often the best choice of modeling algorithm

is related specifically to the application domain. For example, Gaussian Processes perform well

in low-data regimes, but scale poorly with the size of the dataset where Neural Networks fit

naturally. A survey of learning for control can be found in Schaal et al. [120].
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The following subsections provide background information on the main three features of

MbSC : data-driven modeling (Section 2.2.1), autonomous policy generation (Section 2.2.2),

and dynamic control allocation (Section 2.2.3).

2.2.1. Data-driven Modeling and System Identification

Data-driven model-based shared control relies on a model of the system and control dynam-

ics that is learned from observation. As highlighted previously in this thesis, the vast majority

of related work in shared control relies instead on a priori knowledge of the dynamics of the

assistive robotic partner [5, 18, 105]. A novel aspect of this work then, is the development of

techniques that extend shared control paradigms to scenarios in which we have no prior knowl-

edge of this information [107]. Instead, data is collected through observation of interactions

between the human partner and the dynamic machine, and then used to learn a model of the

system and control dynamics. As the training data stems from interactions between the two

partners (i.e., demonstrations), the model incorporates implicit control information about the

human-in-the-loop.

This idea is another key insight that motivates this thesis. That is, instead of developing

user-specific control allocation strategies, we posit that it is easier to both model and regu-

late the joint system than it would be to model and regulate each system independently. We

therefore use the learned representation of the joint system to develop autonomous intervention

policies that can improve system safety and stability constraints without explicit knowledge of

the individual human partner. In theory, the shared control algorithms proposed in the following

chapters are agnostic to the choice of machine learning algorithm used to learn and represent the

dynamics [26]. However, the implementations described in this work often rely on a particular
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technique—the Koopman operator. The Koopman operator has only recently become popular

in the robotics literature, and for that reason, we provide additional background information on

this modeling technique in Section 2.3.

2.2.2. Autonomous Policy Generation

In addition to providing a quantitative understanding of each partner, data-driven models

of the joint human-machine system can be used to generate autonomous control policies by

integrating the learned representation of the system dynamics into an optimal control frame-

work. This idea stems from model-based reinforcement learning and can be used to generate

the autonomous partner’s control and regulate the motion of the shared control robot. The main

question we must address when considering what the autonomous partner’s policy must be ca-

pable of is, “What portion of the control problem is the autonomous partner responsible for?”

Depending on the specific pair of human and machine partners, and the given task, one could

imagine that the autonomous partner has a wide range of responsibilities. For example, if the

human partner is operating a system they have significant experience with (e.g., driving a car),

it is possible the autonomous partner only needs to be responsible for particularly challenging

aspects of the control problem (e.g., anti-lock braking). In contrast, if the mechanical system

is inherently complex (e.g., exoskeletons), or simply unfamiliar to the human operator, the

autonomous partner may need to be responsible for the majority of the control problem to

ensure system safety. In our motivating domains (i.e., assistive and rehabilitation robotics),

the influence of the autonomous partner must also account for the physical capabilities of the

human-in-the-loop which may increase over time with rehabilitation, or may decrease over time

with the progression of a disease. For these reasons, the autonomous partner must be capable
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of providing assistance over a wide spectrum of influence, ranging from limited intervention to

full control if required. Additionally, due to our choice to explore signal-level shared control

paradigms, the autonomous partner must be capable of providing control input with the same

frequency as the human partner. This thesis therefore places a particular importance on the

use of policy generation methods that are capable of generalizing to a variety of tasks and

constraints, and that are efficient enough to run in real-time.

The main contribution of this thesis in the area of autonomous policy generation is a series

of methods that integrate learned system models with techniques from classical optimal con-

trol (e.g., derivative-based optimization) and stochastic optimal control (e.g., random shooting

methods [106]). These methods (a) are data-efficient, (b) can be used in an online learning set-

ting, and (c) are easy to integrate into optimal control algorithms. Details of these approaches

are described in the methods sections of the following chapters. There are, of course, alterna-

tive techniques that can be used to generate the autonomous partner’s control policy using data

driven methods. For example, model-free reinforcement learning [120] describes a methodol-

ogy for learning policies that directly map states to actions. These algorithms generally require

significantly more data to converge than model-based approaches [20, 116] and can therefore

be challenging to incorporate into shared control systems, particularly in an online learning set-

ting (Chapter 4). Recent literature explores methods that aim to improve the data-efficiency of

model-free learning algorithms through the integration of model-based reasoning [6]. This line

of research suggests model-free policy generation techniques may offer an alternative, reliable

solution for shared control paradigms in the future.
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2.2.3. Dynamic Control Allocation

Given a model of the system dynamics and the policy of the autonomous partner, the fi-

nal step in defining a model-based shared control paradigm is describing the strategy used to

allocate control between the human and autonomous partners. How to best allocate control

authority to maximize the effectiveness of the human-robot team is an open research ques-

tion [5, 105, 111].

Related work in the shared control literature focuses on the development and analysis of

techniques that statically and/or dynamically allocate control between human and robot part-

ners. The main objective in these works is to improve system performance while reducing the

control burden on the human operator [105]. In some applications, the autonomous partner is

allocated the majority of the low-level control while the human operator acts in a supervisory

role [8] while in others, the roles are reversed, and the autonomous partner takes on the su-

pervisory role [127]. There is also related work in which neither partner acts as a supervisor

and instead control is shared via a mixed-initiative paradigm. For example, researchers have

developed techniques in which the autonomous partner is explicitly aware of the human op-

erator’s intention [43] as well as techniques in which the autonomous partner has an implicit

understanding of the human operator’s control policy [31]. Within the mixed-initiative litera-

ture, control allocation techniques range from the use of pre-defined, discretely adjustable func-

tions [84, 92] to smooth interpolation [46, 100] to probabilistic reasoning [72] to formal policy

blending methods [50]. In addition to sharing control in the signal space, dynamic allocation

has been researched through haptic control [110] and compliant control [81].

The main contribution of this thesis in the area of dynamic control allocation is a series of

data-driven methods that can be used to produce personalized control allocation strategies that
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respond to each individual user. This contribution is particularly important in our motivating

domains (i.e., assistive and rehabilitation robotics) where an improved sense of independence

and agency is paramount to the successful adoption of a specific shared control paradigm. One

idea explored in this work is the use of an outer-loop filter [60, 142] designed to improve a user’s

ability to achieve pre-specified tasks without a priori knowledge of the system dynamics (Chap-

ter 4). This thesis also extends the data-driven, outer-loop filter paradigm to scenarios in which

the user’s goal is unknown and safety of the joint system is paramount (Chapter 5). Finally, this

thesis proposes a control allocation technique based on an optimization procedure that explicitly

minimizes the influence of the autonomous partner over a receding horizon, thereby allocating

the majority of the control authority to the human-in-the-loop (Chapter 6). Importantly, all

methods described in the following chapters are computationally efficient enough to be run iter-

atively, inside a control loop. These methods are therefore capable of automatically allocating

control in a personalized manner based solely on the state of the system and the human’s input

at each instant of the interaction. Finally, this thesis also proposes the use of the autonomous

partner’s trust in an individual human operator’s control skill as a method of personalizing how

control is allocated to improve system performance and user acceptance.

2.3. The Koopman Operator

As mentioned in Section 2.2.1, model-based shared control relies on a model of the joint

system that is learned from observation data. From a scientific perspective, the choice of sys-

tem modeling technique is relatively inconsequential. My work briefly explores some popular

options (e.g., Neural Networks [26, 29]), but the vast majority of the work described in the
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following chapters model the system dynamics through an approximation to the Koopman op-

erator. The Koopman operator has similarities to a variety of methods in the greater machine

learning literature (e.g. linear kernel methods [69]), however, there are representations of the

Koopman operator that make it particularly amenable to engineering systems (see Chapters 4

and 6), in addition to it’s powerful theoretical properties [82]. As the Koopman operator has

only recently been adopted into data-driven engineering applications, this section provides a

short introduction to the theory.

The Koopman operator was first described by Bernard Koopman in 1931 as a method of

representing any nonlinear dynamical system using a linear operator [82]. This is possible be-

cause, instead of acting on the original state space, the Koopman acts on a space of observables,

in which the dynamics are linear but nominally infinite dimensional. To define the Koopman

operator, let us consider a discrete time dynamic system (X , t, F ):

(2.1) xt+1 = F (xt)

where X ⊆ RN is the state space, t ∈ R is time and F : X → X is the state evolution operator.

We also define φ, a nominally infinite dimensional observation function

(2.2) yt = φ(xt)

where φ : X → C defines the transformation from the original state space into the Hilbert space

representation that the Koopman operator acts on. The Koopman operator K is defined as the

composition of φ with F , such that
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(2.3) Kφ = φ ◦ F.

By acting on this Hilbert state representation, the linear Koopman operator is able to capture

the complex, nonlinear dynamics described by the state evolution operator.

While the Koopman operator is theoretically infinite dimensional, recent work has demon-

strated the ability to approximate a finite dimensional representation using data-driven tech-

niques [37, 119]. These techniques fall under a class of algorithms known as Dynamic Mode

Decomposition (DMD) [119, 121, 141]. These algorithms use snapshots of observation data to

approximate the Koopman modes that describe the dynamics of the observed quantities. In the

limit of collected observation data, the approximation to the Koopman becomes exact [150].

Instead of relying on the infinite dimensional representation of the state described in the theory,

DMD uses a basis as a projection operator to lift the state into a higher-dimensional represen-

tation. This thesis makes particular use of Extended Dynamic Mode Decomposition (EDMD)

to approximate the Koopman operator. To provide a mathematical treatment of the EDMD

algorithm, we start by defining the observation function φ as a vector valued set of basis func-

tions chosen to compute a finite approximation to the Hilbert space representation. We can then

define the following approximation to the Koopman operator

(2.4) φ(xt+1) = Kφ(xt) + r(xt)
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where r(xt) is a residual term that represents the error in the model. The Koopman operator is

therefore the solution to the optimization problem that minimizes this residual error term

J =
1

2

T∑
t=1

|r(xt)|2

=
1

2

T∑
t=1

|φ(xt+1)− φ(xt)K)|2
(2.5)

where T is the time horizon of the optimization procedure, and | · | is the absolute value. The

solution to the least squares problem presented in Equation (2.5) is

K = G†A

where † denotes the Moore-Penrose pseudo inverse and

G =
1

T

T∑
t=1

φ(xt)
Tφ(xt)

A =
1

T

T∑
t=1

φ(xt)
Tφ(xt+1)

These data-driven methods have renewed an interest in using the Koopman operator in ap-

plied engineering fields. In contemporary work, the Koopman operator has been successfully

used to learn the dynamics of numerous challenging systems. This includes demonstrations that

show the Koopman operator can differentiate between cyclic and non-cyclic stochastic signals

in stock market data [70], it can detect specific signals in neural data that signify non-rapid eye

movement (NREM) sleep [36], and it can be used to segment control modes in hybrid system

dynamics [77]. Model-based control of robotic systems using a Koopman operator was first

described in [7] and introduced in a shared control paradigm in our work [27, 31]. Deeper
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treatments of data-driven approaches to approximating the Koopman operator can be found

in [37, 83, 119, 140, 150].

This thesis makes use of the Koopman operator representation because, in addition to its

powerful theoretical properties, the Koopman is particularly amenable to modern computational

resources. For example, the Koopman operator can be approximated with techniques that are

efficient enough to be learned online [27]. Additionally, and perhaps most importantly for

real-time shared control, the Koopman operator’s simple, linear representation makes it easy to

integrate with tools from optimal control [7, 27, 31, 32] to generate autonomous policies.
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CHAPTER 3

Trust Adaptation Leads to Lower Control Effort in Shared Control of

Crane Automation

The following chapter describes a data-driven approach to personalized shared control of

a human-machine system. The described SC algorithm relies on a model of the autonomous

partner’s trust, or confidence, in an individual user’s control skill, and increases the human

partner’s control authority inline with the learned trust metric. The trust level is dynamic and

learned through repeated interaction with a given human partner. Trust increases as the human

operator demonstrates a clear understanding of the control problem, and skill in operating the

robot. A significant contribution of this chapter is that the trust metric is task-agnostic (i.e.

not based on features like task-success), and is instead based on a control-theoretic foundation

that rewards stable operation of the dynamic system. The results of a human-subjects study

demonstrate that a personalized and adaptive trust in the human operator can be used to improve

the user’s ability to efficiently operate a dynamic system.

3.1. Introduction

The increasing pervasiveness, capabilities and complexity of autonomous robots in human

environments has highlighted the need for more sophisticated control sharing techniques that

allow humans to interact with, control and shape the behaviors of these systems, while also

maintaining a high level of safety. Shared control enables a human and autonomous system
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to simultaneously control a system. As such, control sharing can create a system that lever-

ages the strengths of each source of control while reducing the effects of the weaknesses. For

instance, in the automotive domain shared control systems have contributed to safer driving

by autonomously identifying and correcting common control mistakes made by humans [139].

Shared control research has accordingly seen a recent surge in interest and utility in areas rang-

ing from rehabilitation and assistive robotics [44, 92], to search and rescue [42, 64], to trans-

portation [46, 65].

Of particular importance to consider when developing these control sharing techniques is

that systems exhibiting significant dynamics are difficult for humans to control. Human opera-

tors often cope with complex dynamics by sufficiently constraining the system to minimize the

effect of the dynamics, for example a crane operator moving a payload very slowly. Alterna-

tively, some form of automated assistance can help to mask the dynamics from the human, for

example the unique shape of the JAS-39 airplane [129] creates aerodynamics that are uncon-

trollable by a human alone, thus significant automated assistance from the flight computer is

added to stabilize the aircraft.

Our take on control sharing is to combine the relative advantages of the human and robot

partners. In this chapter, we consider that automation and optimal control techniques are good

at controlling highly dynamic systems, but require a reference trajectory to try to stabilize to.

While these reference trajectories could come from automated path planners, engaging a hu-

man partner has the advantage of using the exceptional perceptual capabilities and situational

awareness of humans to operate in dynamic environments. The key is for the human to provide

reference trajectories that the automated controller can track.
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In this chapter, one of the primary goals is to maximize stability in complex dynamic

systems while taking advantage of humans’ perceptual and cognitive adaptability. Towards

that end, we develop a human-in-the-loop control framework that reasons explicitly about the

amount of control authority that should be allocated to the human based on the trust, or confi-

dence, that the autonomous system has in the operator’s control skill. The purpose of this trust

metric is to allow the system to learn how capable a user is in providing reference trajectories

that can be easily tracked by the automated controller. The adaptive trust metric can then be

used to develop a more stable shared control system. Our approach is novel in that we charac-

terize interactions between the human and autonomous system within the framework of control

theory in order to build this formalized notion of trust, with which the autonomous system can

modulate control authority.

The proposed shared control framework is validated on a simulated planar crane robot plat-

form in which a human operator is tasked with maneuvering a payload through a maze to dif-

ferent target locations. This platform provides a simulation that approximates a real-world,

cyber-physical system problem that exhibits significant system dynamics. In analyzing our ap-

proach, we place particular importance on how well the system is able to learn and modulate

control authority to a human based on their ability to provide suitable reference trajectories, as

this has a direct effect on the stability of the system.

The remainder of this chapter is structured as follows: Section 3.2 reviews related literature

in shared control and the foundation of optimal control theory that this proposed work is built

upon. Section 3.3 presents our proposed trust formulation, and Section 3.4 describes the imple-

mentation of our experimental platform and details of the experiment, followed by results and

discussion in Section 3.5 and conclusions in Section 3.6.
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3.2. Background and Related Work

This section provides a brief review of the role that trust has played in shared control frame-

works. Additionally, the foundation for the receding horizon optimal controller used in this

chapter is presented.

3.2.1. Trust in Shared Control

Within the shared control literature, a subset of research discusses how to model trust, or

confidence, in an effort to improve human-robot team performance [48, 112, 153]. In these

works, the formulation of confidence represents the trust that the human has in the autonomous

system, so that the automated system can use the model to choose actions to maximize trust

[152]. Additionally, trust has been studied in the context of robot-robot teams [112]. Our

proposed system is differentiated in that we are instead proposing a formulation of trust that

represents the confidence that the autonomous system has in the operator. This metric is then

used to allocate control authority in an effort to maximize stability of the full system. The

explicit definition of trust that we use in this thesis is:

The autonomy’s trust in the human operator’s control skill is a direct measure

of the how closely the autonomous policy can track the human input. This

measure represents the user’s understanding of the system dynamics and their

skill in providing inputs that are achievable by the robotic device.

This definition covers cases where the autonomy tries to track a reference trajectory (Chap-

ter 3) or a simple control input (Chapter 6). Constraints can be applied to the autonomy’s ability

to track the system to ensure real-time operation, or additional features like stability and safety.
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3.2.2. Receding-Horizon Optimal Control

In this chapter, the user’s primary mode of interaction with the dynamic system is by defin-

ing reference trajectories for the automated controller to attempt to follow. The automated

controller uses a discrete-time, receding-horizon, nonlinear optimization procedure to calculate

controls to stabilize to the user-defined reference trajectory. The receding-horizon controller

(RHC) is a type of Model Predictive Control [101] in which cost is minimized over a short

time horizon. Our chosen methodology is based on an online projection-based trajectory opti-

mization technique originally presented in [68]. This technique was later made interactive by

adapting the RHC to discrete-time systems [122], and eventually reformulating it as a real-time,

receding horizon procedure [124] that was used to experimentally stabilize the physical version

of the planar crane system used in this work. Other methods are similarly capable of solving

the presented optimization problem (e.g. [49, 56, 133]), however, the described approach was

chosen because it provides both an optimal control and a feedback law, increasing the stability

of the resulting receding horizon controller. Additionally, the trajectory optimization technique

used is general such that it can be applied to different robots with relatively little effort.

In a general receding horizon control algorithm, at every timestep k a discrete-time tra-

jectory optimization problem is solved over a reference trajectory defined over the next N

timesteps. The optimization routine only has ∆t = tk+1 − tk seconds to achieve convergence

and produce a control signal for the present timestep, before a new measurement is taken and

the procedure must begin again for the next timestep. One of the primary features of the partic-

ular algorithm utilized herein is that it produces a dynamically feasible system trajectory after

every iteration. So even if ∆t seconds does not provide sufficient computation time to achieve
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full convergence, as long as there is time to take a single step, the algorithm is still capable of

producing system controls.

In this work, at timestep k the reference trajectory for the receding optimization is given by

ξ̄ref, k = (xref, k, uref, k)

=
(
{xref (i)}k+Ni=k , {uref (i)}k+N−1i=k

)
over the horizon tref, k = {tref (i) = i∆t | i = k..k + N} where the reference state xref, k

and reference input uref, k do not necessarily satisfy the system dynamics. The optimization

problem statement at time k is then

ξ∗k = arg min
ξk∈T

J(ξk, k)

J(ξk) =
k+N−1∑
i=k

l(x(i), u(i), i) +m(x(k +N))

where ξ is used to indicate N -length sequences of both state x and input u, and T is the set of

dynamically admissible states and input trajectories over the tref, k time horizon. The running

cost Lagrangian l(·) and the terminal cost m(·) are given by

l (x(k), u(k), k) =
1

2
(x(k)− xref (k))ᵀQ(x(k)− xref (k))+

1

2
(u(k)− uref (k))ᵀR(u(k)− uref (k))

and

m(x(N)) =
1

2
(x(N)− xref (N))ᵀP1(x(N)− xref (N))

where Q, R, and P1 are positive semidefinite, symmetric weighting matrices [12].
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This optimization algorithm is an iterative, indirect optimal control algorithm with simul-

taneous variations of state and control at each iteration. As with many iterative optimization

algorithms, it is guaranteed to converge to a local minimum, but has no guarantees on finding a

global optimizer. Both first and second order decent directions are found by minimizing a local

quadratic model. Once a descent direction is found, a step size is found to satisfy a sufficient

decrease condition, and then the scaled descent direction is added to the current iterate. When

the descent direction is added to the current iterate, the state-control trajectory pair no longer

satisfies the system dynamics. The projection operator maps this infeasible system trajectory

back to the system’s trajectory manifold while maintaining convergence guarantees.

Important to note about this framework is that for a given timestep size, ∆t, we only allow

the optimization to run for up to ∆t seconds. Since this computation takes a finite amount of

time, the horizon for the optimizations are actually one timestep ahead of real-world time. This

way the optimization will have completed by the time its result is needed for sending controls to

the system. As a final point, note that the reference trajectory must be defined for at least N∆t

seconds into the future. The consequence is that the system always operates with N∆t seconds

of time delay from the user-provided reference.

3.3. Formulation of the Autonomy’s Trust

In order to define, adapt and make use of a formal notion of trust, our proposed framework

consists of two steps, evaluation of user input and control modulation. In the evaluation of user

input, a trust metric is calculated as a function of the deviation from the reference trajectory.

The control modulation step then uses the metric to allocate control authority. This approach

allows us to asses and improve the system’s understanding of the user’s abilities.
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3.3.1. Evaluation of User Input

After each interaction with the system, a trust metric is calculated using tools provided by

optimal control theory. We take a control-theoretic viewpoint in which we use the deviation

of the executed trajectory from the reference trajectory, as this measure indicates how well the

receding horizon controller is able to track the user input. For a given trial i we calculate a

deviation metric δ. The deviation from the reference trajectory can be captured by the Fréchet

distance [10] between the executed and desired trajectories. To compute this metric in real time,

we use a discrete variation of the Fréchet distance [52],

(3.1) δi(f, g) = inf
α,β

max
t∈[0,1]

d(f(α(t)), g(β(t)))

where f : [a, b]→ V and a, b ∈ <, is the reference trajectory and g : [a′, b′]→ V and a′, b′ ∈ <,

is the control trajectory and (V, d) is a metric space. α and β are continuous nondecreasing

functions that map from [0, 1] onto [a, b] and [a′, b′], respectively. inf is the infinum, or greatest

lower bound. We use the Fréchet distance to compute the deviation between the executed and

desired trajectories as this measure accounts for the velocity and ordering of points along each

curve, a property not shared by similar metrics such as the Hausdorff distance [117], which

computes the distance between two geometries without explicitly considering the paths as time-

based trajectories. Additionally, as mentioned, the discrete measure can be computed in real

time which is important both for our experiments and for any resulting interactive system.

It should be noted that while we focus on the deviation from the reference trajectory in

this work, there are other control-theoretic measures of performance that could be interesting.
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Measures such as distance from the basin of attraction of the receding horizon controller could

be incorporated into the calculation of δ.

We define the trust metric to decrease as the deviation δ increases. To calculate the trust τi

at trial i, we represent the distribution of deviations as a Gaussian distribution, δ ∼ N(µ, σ2),

where µ and σ2 are the mean and variance of an individual’s deviation history. We then update

the previous trust metric τi−1 by computing the probability P of δi

(3.2) τi = τi−1 + γ ·P{δ = δi}

where γ is a learning rate that determines how quickly the trust decays with performance, and

0.1 ≤ τ ≤ 1.

This Gaussian distribution represents the system’s knowledge of the user, and is iteratively

updated after each trial. Intuitively, if there is a large deviation from the desired trajectory,

then τi should be low—because the user is providing reference trajectories that are difficult for

the controller to track, which reduces the overall robustness of the system. We use a Gaussian

distribution to represent the system’s knowledge of the user as it provides a probabilistic method

for weighting updates to the trust metric that places a larger emphasis on greater deviations and

reduces the effect of smaller changes in deviation history. Additionally, as the distribution

is parameterized by an individual user’s history, we can recognize significant changes in the

performance as either personal learning or a failure to understand the system.

3.3.2. Modulation of User Input via Trust

The proposed framework uses trust to allocate control authority. This approach is motivated

by the fact that the human might be poor at accounting for the system dynamics in the low-level



51

controls, but by using the learned trust level we can regulate the human’s input to produce stable

reference trajectories that require little effort to track.

Modulation of the user’s input is realized through a combination of a low-pass filter and

scaling the input speed. By removing the high-frequency content from the input signal, the

receding horizon controller is better able to track the reference trajectory. Similarly, by scaling

the input speed, users are better able to control for momentary mistakes that can lead to chal-

lenging reference trajectories. It is important to note that these transformations can adversely

affect more typical task performance measures such as time to completion, but this is a trade-off

for system stability.

Trust modulates the cutoff frequency of the low-pass filter ω according to

(3.3) ω = (ωmax − ωmin) · (τi)λ + ωmin

where ωmin is the minimum cutoff frequency that still allows the user to complete the task,

ωmax is the maximum frequency that contains control information in the input signal, λ is a

parameter that shapes the steepness and direction of the function, and τi is the user trust from

Equation (3.2).

Trust also influences the magnitude of the human’s input, according to

(3.4) ṽi = τi · vi

where ṽi is the tempered 2D system velocity and vi is the 2D input velocity.

As trust in the operator input increases, the user is given greater command bandwidth—

with the expectation that skilled users generate high frequency inputs only when appropriate
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Figure 3.1. Definition of the system configuration variables xm, ym, xr and l.
The delay between user input (yellow line) and execution (blue line) is approxi-
mately 1 second.

and feasible for the controller to track, whereas with novice users the high frequency signals

tend to be overshoot or corrective movements.

3.4. Experiment Design

Our trust-based shared autonomy framework is demonstrated on a simulated planar crane

system, in which an overhead robot with a winch has a mass suspended by a string. The dynamic

simulation and optimal control calculations for the planar crane system are completely done in

the open-source Python module trep1 [73], which has been used for a variety of real-time op-

timal control and estimation problems ranging in complexity from a single degree-of-freedom

(DOF) pendulum up to a 40-DOF marionette [74, 123]. One of trep’s strengths is its inte-

gration with the Robot Operating System (ROS). Trep’s ability for real-time optimal control

calculations, combined with ROS’s ability to interface with hardware and share code, result in

a software package that enables shared control research.

1trep is available at http://nxr.northwestern.edu/trep

http://nxr.northwestern.edu/trep
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Figure 3.2. Example maze environments for the simulated planar crane task,
showing initial position (red circle), target position (green circle), current posi-
tion of the user input (yellow circle), reference trajectory (yellow line), executed
trajectory (blue line), suspended mass (white circle), and maze walls (black). A
robotic winch (grey) manipulates the location and length of the string supporting
the payload.

The experiment was run on a Core i7 laptop with 8 GBs of RAM. The winch was initialized

at the same location in each experiment (red circle in Fig. 3.2). The operator used the joystick of

a Sony Playstation 3 (PS3) controller to provide the desired trajectory (or reference trajectory),

which refers to the ordered set of target positions (yellow line in Fig. 3.2). As the user moves

the target position (green circle in Fig. 3.2) through the environment, we maintain the desired

position and velocity associated with each timestep.

3.4.1. Experimental System

The overhead robot is constrained to motion in a single dimension, moving only along the

x-axis, and a pulley controls the length of the string. The resulting system has four configura-

tion variables: horizontal position of the mass xm, vertical position of the mass ym, horizontal
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position of the robot xr, and the length of the string l. The vertical position of the robot is

fixed. Fig. 3.1 illustrates the coordinate system and configuration variables. Our model of the

system assumes that the horizontal position of the robot xr and the length of the string l can be

treated as kinematic inputs [38, 74]. With this assumption the Lagrangian for the system is only

a function of the dynamic configuration variables xm and ym, and it is given by

(3.5) L(q, q̇) =
1

2
m(ẋ2m + ẏ2m)−mg yr

where m is the mass of the payload and g is the acceleration due to gravity. A holonomic con-

straint enforces compatibility between the robot’s kinematically-controlled horizontal position

and string length and the two dynamic configuration variables. In continuous time, this results

in a system with an eight-dimensional state vector defined below

X(t) = [xm(t), ym(t), xr(t), l(t), ẋm(t), ẏm(t), ẋr(t), l̇(t)]
T

and a two-dimensional input vector

U(k) = [ẍ(t), l̈(t)]T

comprised of accelerations of the robot position and string length. To discretize this system and

obtain the discrete-time controller, we use variational integrators to represent the discrete-time

system [73, 74].

We choose this system because it provides dynamics that are difficult for a human to control,

while allowing for the definition of dynamic tasks that are representative of tasks for which

control sharing would be beneficial. Fig. 3.3 illustrates what can happen when a human controls
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the robot position and winch speeds directly, without aid from the autonomy. In this case, the

position of the mass along the x-axis oscillates considerably due to the pendulum-like dynamics

of the system. Though the human’s control inputs are uncomplicated (red line), the resulting

dynamics are unaccounted for, as evidenced by the oscillation in the positional error of the

suspended mass position over time (blue line).

3.4.2. Experimental Task

Inspired by a task that is currently part of real crane operator certification tests, we imple-

ment a maze navigation task within our simulated planar crane environment (Fig. 3.2). In the

certification test task, the operator must negotiate a zigzag corridor with a payload [2]. Our task

presents users with a target location within a maze, with walls arranged such that the path to

the target is highly constrained. The task is complete once the mass dwells within the target

location for 0.5 seconds.

We test three different task configurations of increasing difficulty (Fig. 3.2). First, a low

difficulty configuration where the total path length is short, requires few turns (∼3) and the

Figure 3.3. Robot (red) and suspended mass (blue) position versus mass position
along the x-axis during direct control. Note the pendular dynamics of the system
when the user does not attempt to issue controls that account for the system
dynamics.
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maze hallways are wide. Then, a medium difficulty configuration where the total path length is

longer, requires more turns (∼5) and the maze hallways are an average of 60% as wide as the

low difficulty configuration. Finally, a high difficulty configuration where the total path length

is long, includes many turns (∼10) and the maze hallways are an average of 50% as wide as

the low difficulty configuration. A total of 21 (8 low difficulty, 8 medium difficulty and 5 high

difficulty) unique mazes are used in this experiment.

3.4.3. Autonomous Control

The automated control uses a receding-horizon controller which controls xr and l to track

a reference trajectory. The human specifies the desired reference trajectory with respect to the

position of the mass xm and ym. A full reference trajectory actually consists of defining the

complete position, velocity and momentum of the system at each time step, so, our simplifying

assumptions set the velocity and momentum for both the robot and the suspended mass to zero.

The variables xr and l are calculated using a simple inverse kinematic solution that does not

account for mass swing, where xr = xm and l = yr − ym. While this is not a feasible trajectory

itself, the receding horizon controller does a good job of tracking the user input variables xm

and ym.

Unlike trajectory optimization techniques which usually require the entire trajectory prior

to generating the optimal trajectory, the receding horizon controller optimizes the trajectory

within the window of the receding horizon. This enables online control of the system by a

user. This interactivity comes at the cost of not having a global optimal trajectory, due to an

inability to look ahead along the trajectory over the entire time period. Consequently, if the

receding horizon window is set too small, the controller is unable to account for enough of the
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system dynamics and does not perform well. Alternatively, if the window is set too large, the

optimization can take too long to run in real time. We found that for this system the range of

window sizes that work well is between 5 and 20 time steps (approximately 0.5 to 2 seconds).

For all of our experiments, we use a window size of 10, meaning there is a delay of about one

second between user input and system response (Fig. 3.1).

We tune the optimization parameters (Q, R and P1) such that much higher weights are

placed on having the mass follow the reference configuration. That is, the diagonal terms cor-

responding to xm and ym had much higher weights than any other entries. N was chosen to be

high enough as to achieve good performance, and low enough as to allow the optimization to

reliably fully converge in δt seconds.2 These weights also are the same as the tuned weights for

the real-world experimental system [124].

3.4.4. Trust Computation

In order to determine the appropriate range of low-pass filter cutoff frequencies to map to

trust, we performed a Fourier analysis of user input that contained high and low frequency

movements. Fig. 3.4 shows the analysis which highlights that nearly all of the control infor-

mation exists in the 0.1 to 2.5 Hz bandwidth. Thus the range of our cutoff frequency for the

low-pass, 4th-order Butterworth filter is from 0.1 to 3.0 Hz, where 0.1 Hz maps to zero confi-

dence in the user input and 3.0 Hz maps to full confidence.

From the Fourier analysis, we see that the control content decreases monotonically. To

distribute the capabilities of the user uniformly over the confidence range, we use Equation (3.3)

to map confidence to cutoff frequency ω with ωmax = 3.0, ωmin = 0.1, and λ = 3. The intuition

2Optimization parameter values : Q = diag([20, 20, 0.1, 0.1, 0.1, 0.1, 0.25, 0.25]), R = diag([0.1, 0.1]), P1 = Q, δt =
0.1 (10 Hz), N = 10 (with 10 timesteps, each RHC window considers a 1-second horizon).
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Figure 3.4. Fourier analysis of the user input along the x axis (blue) and along
the y axis (red). The majority of the signal content of the user input happens
below 0.2 Hz. Above 2.5 Hz there is almost no signal content (not visualized).

behind this is to require large changes in confidence for small changes in cutoff frequency when

between ωmin and ωmax.

3.4.5. Experimental Protocol

Twenty-two users were recruited from the Northwestern University community.3 Users were

randomly grouped into two cohorts:

• Static: The trust level was held static after the initial training period.

• Adaptive: The trust level evolved throughout the experimental procedure.

Each experiment assumed the following protocol:

• Initialization: Three trials of shared control with fixed trust values on the low-difficulty

maze task. Each trial was initialized to one of the (low 0.1, middle 0.5 or high 1.0)

fixed trust values, and after each trial the trust was updated according to Equation 3.2.

3Two participants were removed from the study before analysis due to a poor understanding of the task require-
ments. On average, users completed 11.7 of the 15 test trials. The two removed users completed one trial each.



59

The presentation order (of which fixed trust value) was random and balanced across

subjects.

• Low: Five trials of shared control on the low-difficulty maze task. Trust was initialized

in the first trial to the average of the three updated trust values from the initialization

phase, for both cohorts. Trust was then held fixed for cohort static, and updated ac-

cording to Equation 3.2 after each trial for cohort adaptive.

• Medium: Five trials of shared control on the medium-difficulty maze task. Trust for

the adaptive cohort was initialized to the final value updated in phase Low. Trust for

the static cohort remained fixed.

• High: Five trials of shared control on the high-difficulty maze task. Trust for the

adaptive cohort was initialized to the final value updated in phase Medium. Trust for

the static cohort remained fixed.

Each experiment additionally included five trials of direct control on the low-difficulty maze,

for a total of 23 trials.

3.5. Results and Discussion

The validation of the proposed formulation consists of an analysis of the system’s under-

standing of, and faculty in accounting for, user specific abilities to provide references trajec-

tories that can be easily tracked by the automated controller. One premise underlying this

formulation of trust is that the system should be able to learn from an individual user’s inputs

and leverage this information to modulate the control authority afforded to that user. In our

formulation, the goal of the system is to modulate the user input to produce stable references

trajectories as defined by a minimization of control effort. We compute the controller effort



60

as the magnitude of the two dimensional control vector, u(t). This vector is comprised of the

finite-differenced velocity of the robot’s horizontal position and the finite-differenced velocity

of the string length. We compute the magnitude at each time step using the Euclidean norm.

The average controller effort over the course of an entire trial is defined as

(3.6) U =

N∑
t=0

‖u(t)‖

N

where t is time, and N is the final time-step in a given trajectory. Therefore, larger controller

effort indicates that the controller is experiencing some combination of increased error from

the reference trajectory and increased input effort. Either scenario indicates that the automated

controller has had to work harder to track the reference trajectory.

In this chapter, we evaluate the performance of the operator on a given task entirely through

an analysis of the average required controller magnitude. There are other possible measures

including task-specific metrics like number of collisions; however, we chose average controller

magnitude as our sole performance metric as it is task-agnostic and will generalize to other

applications in which a user provides a reference trajectory.

3.5.1. Adaptive vs. Static Trust

Here we analyze the system’s ability to modulate a user’s trust metric to produce stable ref-

erence trajectories. We perform a statistical analysis comparing the average controller magni-

tude, U, between the adaptive and static trust cohorts in each maze configuration. All statistical

analysis is done using a two-tailed Student’s t-test. In both the static (p < 0.01) and adaptive

(p < 0.01) trust cohorts, we see a statistically significant decrease in the average controller



61

magnitude required to track the user’s reference trajectory in the final maze configuration when

compared with the initial maze configuration. This suggests that users in both cohorts are able to

learn pertinent aspects of the system dynamics and how to provide stable reference trajectories

from the viewpoint of the automated controller.

We also find (Fig. 3.5) a statistically significant difference between the average controller

magnitude, U, required to track reference trajectories provided by users in the static trust co-

hort versus those in the adaptive trust cohort, in the final maze configuration (p < 0.01). As

we see no statistical evidence that one cohort outperforms the other in the first two maze con-

figurations, we can infer that the adaptive trust formulation allows the system to adapt to the

(possibly changing) abilities of the user, and so modulates the user input to provide reference

trajectories that require less effort for the controller to stabilize to—regardless of the abilities of

the individual user.

3.5.2. Average Controller Magnitude in Adaptive Trust Cohort

A more detailed analysis of how trust evolves in the adaptive trust cohort can be seen in

Fig. 3.6. This plot presents preliminary results4 that further suggest the controller is adapting to

the abilities of the user, resulting in reference trajectories that require less effort to track. This

plot breaks down the evolution of required controller effort over the course of the experiment

based on users who finished the study with higher trust (red) than they began with, and those

who finished the study with lower trust (blue).

4We say preliminary results because this test included only the members of the adaptive trust cohort, and divides
them into two groups (consisting of 7 (red, Fig. 3.6) and 3 (blue, Fig. 3.6) subjects), and therefore provided a
smaller sample size from which we draw conclusions.
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Figure 3.5. Average controller magnitude (U) per maze configuration for the
static (green) and adaptive (blue) trust cohorts. We see a significant (p < 0.01)
decrease in average controller magnitude between the initial maze configuration
(low difficulty) and the final maze configuration (high difficulty) in both cohorts.
We also see that the adaptive cohort requires a significantly (p < 0.01) dimin-
ished average controller magnitude than the static cohort in the final maze con-
figuration. We do not see this difference in either the low or medium difficulty
maze configuration which demonstrates that the rate of learning is significantly
accelerated in the adaptive trust cohort. Key : * p < 0.05 and ** p < 0.01.

This plot shows that in cases where the automated system thinks the person can handle

more trust, which corresponds with the user being given greater control bandwidth, there is

a reduction in average control magnitude (p < 0.05). Additionally, when the system thinks

the person requires less trust, which corresponds to lower control bandwidth, and we also see

a reduction in average control magnitude (p < 0.01). This demonstrates that the results are

not due to a specific modulation of the user input (e.g. saturation of the execution speed) as

our hypothesis holds true whether the user sees an improvement or decline in their abilities to

solve the maze task. That is, when the system’s trust is adaptive, the operator is able to produce

reference trajectories that require less effort to track than when the system’s trust is static.
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Figure 3.6. Evolution of the average controller magnitude (U) per trial. The
data are divided into those subjects whose final trust value was higher (red) ver-
sus lower (blue) than the initial trust value. Mean (line) and standard deviation
(variance envelope) are presented. We see a significant decrease in the required
average controller magnitude both in users whose final trust value was lower
(p < 0.01) and in users whose final trust value was higher (p < 0.05) than
their initial value. This demonstrates that the results hold regardless of whether
the initial control authority allocation is an over- or under-estimate of the user’s
expertise.

3.5.3. Trust Metric Over Time

Additionally, we find no single trend in the evolution of the trust values that produce the

trend of decreasing average controller magnitude (Fig. 3.7). This helps elucidate the point

that it is not simply an increase or decrease in the trust metric that allows a user to produce

superior reference trajectories. Rather, from the standpoint of the automated controller, it is a

combination of user performance, system learning and the adaptive trust level, which produces

this trend.
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Figure 3.7. Evolution of trust over the course of the experiment (15 trials). Each
line represents a single user in the adaptive trust cohort. No single pattern
emerges, suggesting that the adaptive trust metric based on user performance
is the causal variable in reducing the required average controller magnitude of
the shared control system.

3.6. Conclusion

This chapter has presented a trust-based shared control framework that utilizes a control-

theoretic measure of trust that an automated controller has in the operator. Results show that

an adaptive trust metric, based on our control-theoretic formulation, was able to improve the

ability of the shared control system to produce reference trajectories that require significantly

(p < 0.01) less effort for the controller to track than those provided by users with a static

trust metric. The reduced average controller magnitude, U, reflects the system’s ability to learn

appropriate methods for modulating the operator’s input, resulting in reference trajectories that

are easier to track. This work creates a foundation upon which to expand the trust-based shared

control framework to include the online, continuous adaptation of trust, more granular user skill

level classification, as well as applications to additional tasks and robot platforms.
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CHAPTER 4

Data-driven Model-based Shared Control of Human-Machine Systems

The following chapter introduces the notion of data-driven, model-based shared control

(MbSC) for human-machine systems. This methodology extends the efficacy of SC systems

to scenarios in which we have no a priori knowledge of the system dynamics, or the human-

in-the-loop. By integrating techniques from machine learning and optimal control, MbSC is

able to generalize to any pair of human and machine partners. Additionally, as the data used

to model the system dynamics is provided through demonstration, MbSC incorporates implicit

information about the human partner in the learned model (which can be computed offline or

online). Results of two human-subjects studies demonstrate that this approach can be used to

improve the control skill demonstrated by a user in comparison to a user-only control paradigm.

The associated code base is available online for free: https://github.com/asbroad/

model_based_shared_control.

4.1. Introduction

Robot autonomy offers great promise as a tool by which we can enhance, or restore, the

natural abilities of a human partner. For example, in the fields of assistive and rehabilitative

medicine, devices such as exoskeletons and powered wheelchairs can be used to assist a human

who has severely diminished motor capabilities. However, many assistive devices can be diffi-

cult to control. This can be due to the inherent complexity of the system, the required fidelity in

the control signal, or the physical limitations of the human partner. We can, therefore, further

https://github.com/asbroad/model_based_shared_control
https://github.com/asbroad/model_based_shared_control
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Figure 4.1. Pictorial representation of a shared control paradigm. Both the hu-
man and autonomy are capable of controlling the mechanical system, and a dy-
namic control allocation algorithm selects which agent is in control at any given
moment.

improve the efficacy of these devices by offloading challenging aspects of the control problem

to an autonomous partner. In doing so, the human operator is freed to focus their mental and

physical capacities on important high-level tasks like path planning and interaction with the en-

vironment. This idea forms the basis of shared control (see Figure 4.1), a paradigm that aims to

produce joint human-machine systems that are more capable than either the human or machine

on their own.

A primary challenge that researchers and engineers face when developing shared control

paradigms for generic human-machine systems is a lack of a priori knowledge of the human

and robot partners. This issue is compounded by the fact that, in the real world, many users

may operate the same mechanical device. It is therefore necessary to consider solutions that

generalize to a variety of potential human and machine partners. In this chapter, we propose

a data-driven methodology that learns all relevant information about how a given human and

machine pair interact directly from observation. We then integrate the learned model of the
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joint system into a single shared control paradigm. We refer to this idea as model-based shared

control.

In this chapter, we learn a model of the joint human-machine system through an approxi-

mation to the Koopman operator [82], though any machine learning approach could be used.

This model is trained on observation data collected during demonstration of the human and ma-

chine interacting and therefore describes both the human’s input to the system, and the robot’s

response to the human input and system state. We can then integrate the portion of the learned

model that specifically describes the system and control dynamics of the mechanical device into

an optimal control algorithm to produce autonomous policies. Finally, the input provided by the

human and autonomous partners are integrated via a geometric signal filter to provide real-time,

dynamic shared control of unknown systems.

We validate our thesis that modeling the joint human-machine system is sufficient for the

purpose of automating assistance with a human subjects study consisting of 16 participants. We

also demonstrate that our modeling technique is generalizable across users with results that sug-

gest that individualizing the model offline, based on a user’s own data, does not affect the ability

to learn a useful representation of the dynamical system. We then compare and contrast the effi-

cacy of linear model-based shared control (where linear constraints are placed on the modeling

and control algorithms) with nonlinear model-based shared control (where these constraints are

relaxed). This comparison incorporates data from a separate human subjects studying consist-

ing of a second group of 16 participants. We find that nonlinear methods improve performance

more than linear methods. Finally, we evaluate the efficacy of our shared control paradigm in an

online learning scenario, demonstrating the sample efficiency of the model-based shared control

paradigm.
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We provide background and related work in Section 4.2. We then define model-based shared

control in Section 4.3. In Section 4.4 we describe the human subjects study we perform and

detail the results in Section 4.5. We describe important takeaways in Section 4.6 and conclude

in Section 4.7.

4.2. Background and Related Work

This section presents background and related work in the shared control literature for human-

machine systems. We also identify alternative methods of autonomous policy generation for

shared control, and provide background on the Koopman operator [82] with a particular focus

on its use in learning system dynamics.

4.2.1. Data-driven Shared Control

The effects of shared control (SC) have been explored in numerous fields in which the

addition of a robot partner could benefit a human operator. For example, in assistive and reha-

bilitation robotics, researchers have explored the effects of shared control on teleoperation of

smart wheelchairs [53, 138] and robotic manipulators [80]. Similarly, researchers have explored

shared control as it applies to the teleoperation of larger mobile robots and human-machine sys-

tems, such as cars [46] and aircraft [100]. When dealing with systems of this size, safety is

often a primary concern.

Our work is similar to prior art in shared control as we use automation to facilitate control

of a robot by a human partner. However, in this work, we do not augment the user’s control

based on an explicit model of the user. Instead, we use observations of the user demonstrations
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to build a model of the joint human-robot system. The effect of the human partner on the shared

control system is implicitly encoded in the model learned from their interactions.

4.2.2. Model-Based Optimal Control and Reinforcement Learning

Most closely related to the approach we describe in this paper is recent work that com-

putes control trajectories by integrating learned dynamics models with model predictive control

(MPC) algorithms [149, 51]. These algorithms are defined by an iterative, receding horizon

optimization process instead of using an infinite-horizon. Similar to our own work, these re-

searchers first collect observations from live demonstrations of the mechanical device to learn

a model of the system dynamics. They then integrate the model with an MPC algorithm to

develop control policies. Beyond methodological differences (e.g., choice of machine learning

and optimal control algorithms), the key theoretical distinction between these works and our

own is our focus on shared control of joint human-machine systems, instead of developing fully

autonomous solutions. In particular, we learn a model of the joint system that is integrated into

a shared control system to improve a human operator’s control of a dynamic system. We there-

fore consider the influence of the human operator both during the data-collection process and

at run-time in the control of the dynamic system. In this work, we learn a model of the system

and control dynamics through an approximation to the Koopman operator [82].

4.3. Model-based Shared Control

Our primary goal is to develop a shared control methodology that improves the skill of

human-machine systems without relying on a priori knowledge of the relationship between the

human and the machine. To define our model-based shared control algorithm we now describe
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Figure 4.2. Pictorial depiction of the our model-based shared control paradigm.
(a) Collect observations from user interaction and learn a model of the joint
human-machine system through an approximation to the Koopman operator.
This can be computed offline or online. (b) Compute control policy of au-
tonomous agent by solving optimal control problem using the learned model.
(c) Allocate control to integrate autonomy (gray) and user input (green/red).

the (1) model learning process, (2) method for computing the policy of the autonomous agent

(autonomy input in Figure 4.1) and (3) control allocation method (the green box in Figure 4.1).

A pictorial depiction of our model-based shared control paradigm can be found in Figure 4.2.

Our learning-based approach develops a model of the joint human-machine system solely from

observation, and this model can be used by the policy generation method to develop autonomous

control trajectories. The control allocation method then describes how we integrate the input

provided by the human partner and the autonomous agent into a single command that is sent to

the dynamic system.

4.3.1. Model Learning via the Koopman Operator

When designing assistive shared control systems, it is important to consider both the human

and autonomous partners. To ensure that our paradigm is valid for generic human-machine
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systems, we learn both the system dynamics and information about the user interaction directly

from data. In this work, we develop a model of the joint human-machine through an approx-

imation to the Koopman operator (see Chapter 2), which can be computed offline or online

(discussed further in Section 4.5.3). The model learning process is depicted in Figure 4.2(a).

4.3.1.1. Basis. To approximate the Koopman operator using Extended Dynamic Mode Decom-

position [150], we must define a basis or observation function (φ). This basis describes the space

the approximate model operates on. In this work, we require that the finite basis φ includes both

the state and control variables [114]. This ensures that the Koopman operator models both the

natural dynamics of the mechanical system and the control dynamics as provided by the user

demonstration. Here we choose φ such that

φ =[1, x1, x2, x3, x4, x5, x6, u1, u2, u1 ∗ x1, u1 ∗ x2, u1 ∗ x3, u1 ∗ x4, u1 ∗ x5,

u1 ∗ x6, u2 ∗ x1, u2 ∗ x2, u2 ∗ x3, u2 ∗ x4, u2 ∗ x5, u2 ∗ x6, u1 ∗ cos(x3),

u1 ∗ sin(x3), u2 ∗ cos(x3), u2 ∗ sin(x3)].

(4.1)

These 25 basis functions were chosen to combine information about the geometry of the task

(e.g., the trigonometric functions capture specific nonlinearities present in the system dynamics,

see Section 4.4.1) with information related to how the user responds to system state. One can

also choose the set of basis functions through data-driven techniques. For example, Sparsity

Promoting DMD [75] imposes an `1 penalty during the learning process and therefore algorith-

mically decides which basis functions are the most relevant to the observable dynamics [136].

In this chapter we empirically select a fixed set of basis functions to ensure that all models

(across the different users in our validation study) are learned using the same basis.
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4.3.2. Autonomous Policy Generation

To generate an autonomous control policy, we can integrate the portion of the learned model

that relates to the system and control dynamics into a model predictive control (MPC) algorithm.

In particular, we use Koopman operator model-based control [7, 31], which we detail now in

full. To compute the optimal control sequence, u, we must solve the following Model Predictive

Control (MPC) problem

(4.2)

minimize
u

J =
T−1∑
t=0

l(xt, ut) + lT (xT )

subject to xt+1 = f(xt, ut),

ut ∈ U, xt ∈ X, ∀t

where f(xt, ut) is the system dynamics, l and lT are the running and terminal cost, and U and

X are the set of valid control and state values, respectively.

To integrate our learned system model, we re-write the system dynamics as such:

(4.3) φ(xt+1) = fK(xt, ut)

where fK = KTφ(xt, ut) is the learned system dynamics parameterized by a Koopman operator

K. This equation demonstrates the fact that the Koopman operator does not map directly from

state to state, but rather operates on functions of state. We can then evaluate the evolved state

by recovering the portion of the basis that represents the system’s state

(4.4) xt+1 = φ(xt+t)1:N
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where values 1 : N are the state variables, as per our definition in Equation (4.1), and N is the

dimension of the state space. The policy generation process is depicted in Figure 4.2(b).

4.3.2.1. Nonlinear Model Predictive Control Algorithm. We solve Equation (4.2) with Se-

quential Action Control [17] (SAC). SAC is a real-time, model-based non-linear optimal con-

trol algorithm that is designed to iteratively find a single value, a time to act, and a duration that

maximally improves performance. Other viable nonlinear optimal control algorithms include

iLQR [95] and DDP [102, 134]. SAC is particularly well suited for our shared control algorithm

because it searches for single, short burst actions which aligns well with our control allocation

algorithm (described in detail in Section 4.3.3). Additionally, SAC can compute closed-loop

trajectories very quickly (1 kHz), an important feature for interactive human-machine systems

such as the one presented in this chapter.

4.3.2.2. Integrating the Koopman model and SAC. Sequential Action Control is a gradient-

based optimization technique and it is therefore necessary to compute derivatives of a system

during the optimization process. The linearization of the discrete time system is defined by the

following equation

xt+1 = Axt +But.

By selecting a differentiable φ, one can compute A and B

(4.5)
A = KT1:N

∂φ

∂x

B = KTN :N+P

∂φ

∂u

where N is again the dimension of the state space, and P is the dimension of the control space.
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4.3.3. Control Allocation Method

To close the loop on our shared control paradigm, we define a control allocation method that

uses the solution from the optimal control algorithm to provide outer-loop stabilization. We use

a geometric signal filter that is capable of dynamically shifting which partner is in control at

any given instant based on optimality criteria. This technique is known as Maxwell’s Demon

Algorithm (MDA) [142]. Our specific implementation of MDA is detailed in Algorithm 1.

Algorithm 1 Maxwell’s Demon Algorithm (MDA)

if 〈uh, ua〉 ≥ 0 then
u = uh;

else
u = 0;

end if

where uh is the control input from the human operator, ua is the control produced by the auton-

omy, and u is applied to the dynamic system. We also provide a pictorial representation of the

algorithm in Figure 4.3.

Figure 4.3. Maxwell’s Demon Algorithm (MDA)

This control allocation method restricts the user’s input to the system to be in the same half-

plane as the optimal control solution, and places no other limitations on the human-machine

interaction. If the user’s input is in the opposite half-plane, no input is provided to the system.

This control allocation method is lenient to the human partner, as notably, the autonomous

agent does not add any information into the system and instead only blocks particularly bad
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input from the user. Therefore, any signal sent to the system originates from the human partner.

We use this filter because we are motivated by assistive robotics, in which prior research has

shown that there is no consensus across users on desired assistance level [53]. By allowing the

user a high level of control freedom, the system encourages input from the human operator and

restricts how much authority is granted to the autonomous partner. This method is depicted in

Figure 4.2(c).

4.4. Human Subjects Study

Here, we detail the experimental setup that we use to study three main aspects of the de-

scribed system.

• First, our aim is to evaluate the efficacy of model-based shared control as it relates to

task success and control skill. Concurrently, we aim to evaluate the generalizability of

the learned system models with respect to a wide range of human operators.

• Second, we aim to evaluate the efficacy of model-based shared control under an on-

line learning paradigm—specifically, the sample-efficiency of the Koopman operator

representation.

• Finally, we aim to evaluate the impact of nonlinear modeling and policy generation

techniques through a comparison to a second human-subjects study that enforces linear

constraints on our model-based shared control algorithm.

4.4.1. Experimental Environment

The proposed shared control framework is evaluated using a simulated lunar lander (see

Figure 4.4). We use a simulated lunar lander (rocket) as our experimental environment for a
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Figure 4.4. Simulated lunar lander system. The green circle is the goal location.
The red dots represent an engine firing.

number of reasons. This environment is challenging for a novice user, but performance can

be improved (and sometimes mastered) given enough time and experience. Similar to a real

rocket, one of the main control challenges is the stability of the system. As the rocket rotates

along its yaw axis, firing the main thruster can produce nonintuitive dynamics for a novice.

Furthermore, once the rocket has begun to rotate, momentum can easily overwhelm a user who

is unfamiliar with such systems. Therefore, it is often imperative—particularly for non-expert

users—to maintain a high degree of stability at all times in order to successfully complete the

task. In addition to the control challenges, we choose this environment because the simulator

abstracts the system dynamics through calls to the Box2D physics engine; therefore, we do not

have an exact model and thus have an explicit need to learn one.
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4.4.2. System Description

The dynamic system is a modified version of an open-source environment implemented

in the Box2D physics engine and released by OpenAI [34]. Our modifications (1) allow for

continuous-valued multi-dimensional user control via a joystick, and (2) incorporate the code-

base into the open-source ROS framework. We have made our code available online at https:

//github.com/asbroad/model_based_shared_control.

The lunar lander is defined by a 6D state space made up of the position (x, y), heading

(θ), and their rates of change (ẋ, ẏ, θ̇). The control input to the system is a continuous two

dimensional vector (u1, u2) which represents the throttle of the main and rotational thrusters.

The main engine can only apply positive force. The left engine fires when the second input

is negative, while the right engine fires when the second input is positive. The main engine

applies an impulse that acts on the center of mass of the lunar lander, while the left and right

engines apply impulses that act on either side of the rocket. We remind the reader that our goal

is to learn both the system dynamics and user interaction. For this reason, we must collect data

both on the system state and also the control input. Together, this defines an eight dimensional

system:

X = [x, y, θ, ẋ, ẏ, θ̇, u1, u2]

where the first six terms define the lunar lander state and u1, u2 are the main and rotational

thruster values, through which the user interacts with the system.

https://github.com/asbroad/model_based_shared_control
https://github.com/asbroad/model_based_shared_control
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4.4.3. Trial Description

The task in this environment requires the user to navigate the lander from its initial location

to the goal location (represented by the green circle in Figure 4.4) and to arrive with a heading

nearly perpendicular to the ground plane and with linear and rotational velocities near zero.

A trial is considered complete either (1) when the center of an upright lunar lander is fully

contained within the goal circle (i.e., the Euclidean distance between the center of the lander

and the center of the goal is less than 0.9 m) and the linear and angular velocities are near zero

(i.e., the linear velocities must be less than 1.0 m/s and the angular velocity must be less than 0.3

rad/sec), or (2) when the lander moves outside the bounded environment (i.e., when the lander

moves off the screen to the left or right) or crashes into the ground.

In each trial, the lunar lander is initialized to the same x, y position (10.0 m, 13.3 m), to

which we added a small amount of Gaussian noise (µ = 0.2 m). Additionally, a random force

is applied at the start of each trial (uniform(−1000 N,1000 N)). The goal location (10.0 m, 6.0

m) is constant throughout all trials and is displayed to the user as a green circle (see Figure ??).

The operator uses a PS3 controller to interact with the system. The joystick controlled by

the participant’s dominant hand fires the main thruster, and the opposing joystick fires the side

thrusters. As the user moves through the environment, we keep track of the full state space at
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each timestep (10 Hz). We provide a video of the system, task and user interaction under shared

control as part of the supplementary material.

4.4.4. Analysis I : Efficacy and Generalizability of Model-based Shared Control

4.4.4.1. Control Conditions. To study the efficacy and generalizability of our shard control

system and the generalizability of the learned system dynamics, we compare four distinct con-

trol conditions.

• In the first condition, the user is in full control of the lander and is not assisted by

the autonomy in any way; we call this approach User Only control. As each user

undergoes repeated trials with the same goal, this can also be considered a natural

learning paradigm.

In the remaining three conditions an autonomous agent provides outer-loop stabilization on

the user’s input as described in Section 4.3. The main distinction between these three control

conditions is the source of the data used to compute the model of the joint system.

• In the second condition, the model is defined by a Koopman operator learned on data

captured from earlier observations of the current user; we call this approach Individual

Koopman.

• In the third condition, the model is defined by a Koopman operator learned on data

captured from observations of three novice participants prior to the experiment (who

were not included in our analysis); we call this approach General Koopman.

• In the fourth condition, the model is defined by a Koopman operator learned on data

captured from observations of an expert user (the first author of the paper, who has
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significant practice controlling the simulated system); we call this approach Expert

Koopman.

We analyze the viability of model-based shared control by comparing the User Only con-

dition to each of the shared control conditions. We analyze the generalizability of the learned

models by comparing the results from the Individual Koopman, General Koopman and Expert

Koopman conditions.

4.4.4.2. Protocol and Participants. Each experiment begins with a training period for the

user to become accustomed to the dynamics of the system and the interface. This training period

continues until the user is able to successfully achieve the task three times in a row or 15 minutes

elapses. During the next phase of the experiment, we collect data from 10 user-controlled

trials, which we then use to develop a model. Finally, each user performs the task under the

four conditions detailed above (10 trials each). The order in which the control paradigms are

presented to the user is randomized and counter-balanced to reduce the effect of experience.

The study consisted of 16 participants (11 female, 5 male). All subjects gave their informed

consent and the experiment was approved by Northwestern University’s Institutional Review

Board.

4.4.5. Analysis II : Online Model-based Shared Control

To study the efficacy of our model-based shared control algorithm in an online learning

paradigm, we collect data from a fifth experimental condition, which we call Online Koopman.

4.4.5.1. Control Condition.
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• The main difference between the Online Koopman paradigm and the three previously

described shared control conditions is that the model of the joint human-machine sys-

tem is learned online in real-time. In all other control conditions, all models were

trained offline from observations gathered during a data collection phase. In the on-

line paradigm, the model is updated continuously starting with the first collected set of

observations.

In addition to the lack of a separate data collection phase, the online learning paradigm is

distinct from the other shared control conditions because of the data that we use to learn the

model. In the shared control conditions that use a model learned offline, we use all of the

observations collected from the user demonstrations to learn the model. In the online learning

paradigm we only update the model when the user input is admitted by the MDA controller.

We choose this learning paradigm because it fits well conceptually with our long term goal of

using the outer-loop algorithm to provide stability and safety constraints on the shared control

system.

4.4.5.2. Protocol and Participants. The online learning paradigm consists of 15 trials per

user to allow us to evaluate possible learning curves. The model is updated at the same rate

as the simulator (10 Hz) and is initialized naively (i.e., all values are sampled from a uniform

distribution [0,1)). This paradigm is presented as the final experimental condition to all subjects.

The subjects are the same 16 participants as in Section 4.4.4.

4.4.6. Analysis III : Comparison of Linear and Nonlinear Model-based Shared Control

To study the impact of nonlinear modeling and policy generation techniques on our model-

based shared control paradigm, we compare results from the above study to a second study
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(consisting of a separate group of 16 participants) that enforces linear constraints on these parts

of the system.

4.4.6.1. Control Conditions. The same four control conditions from Analysis I are evaluated.

The differences lie in (1) the choice of basis used to approximate the Koopman operator and

(2) the choice of optimal control algorithm used to generate the autonomous policy. In this

study, we use a linear basis, instead of a nonlinear basis, to approximate the Koopman operator,

which consists of the first nine terms in Equation (4.1). We furthermore use a Linear Quadratic

Regulator, instead of a nonlinear model predictive control (MPC) algorithm (Sequential Action

Control (SAC)) to generate the autonomous partner’s control policy.

4.4.6.2. Protocol and Participants. The same experimental protocol described in Section 4.4.4

was used, allowing us to perform a direct comparison between the two studies. The data was

previously analyzed in [31] and was collected from 16 additional subjects, resulting in 32

total participants. The code for the linear study is also provided online for free : https:

//github.com/asbroad/koopman_operator_model_learning.

4.4.7. Statistical Analysis

We analyze the results of the human-subjects studies using statistical tests to compare the

performance of participants along a set of pertinent metrics under the control conditions de-

scribed in Section 4.4.4. Our analysis consists of one-way ANOVA tests conducted to evalu-

ate the effect of the shared control paradigm on each of the dependent variables in the study.

These tests allow us to statistically analyze the effect of each condition while controlling for

overinflated type I errors that are common with repeated t-tests. Each test is computed at a

significance value of 0.05. When the omnibus F-test produces significant results, we conduct

https://github.com/asbroad/koopman_operator_model_learning
https://github.com/asbroad/koopman_operator_model_learning
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post-hoc pair-wise Student’s t-tests using Holm-Bonferroni adjusted alpha values [151]. The

post-hoc t-tests allow us to further evaluate the cause of the significance demonstrated by the

ANOVA by comparing each pair of control paradigms separately. Similar to the ANOVA test,

the Holm-Bonferroni correction is used to reduce the likelihood of type I errors in the post-hoc

t-tests.

In addition to reporting the results of the statistical tests, we also use box-and-whisker di-

agrams to display specific metrics. In these plots, the box represents the interquartile range

(IQR) which refers to the data that lies between the first and third quartiles. This area contains

50% of the data. The line inside the box represents the median value and the whiskers above

and below the box are the minimum and maximum values inside 1.5 times the interquartile

range. The small circles are outliers. The plots also depict the results of the reported statistical

tests. That is, if a post-hoc t-test finds statistically significant differences between two condi-

tions, we depict these results on the box-and-whisker diagrams using asterisks to represent the

significance level (∗ : p < 0.05, ∗∗ : p < 0.01, ∗ ∗ ∗ : p < 0.005).

We note that this analysis is used for all reported results. Therefore, if we present the results

of a t-test, it signifies that we have previously run an ANOVA and found a statistically significant

difference. The reader can also assume that any unreported post-hoc t-tests failed to reject the

null hypothesis.
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4.5. Results

We now present the results of the desired analyses described in Sections 4.4.4, 4.4.5, and 4.4.6.

Our analyses support the premise that model-based shared control is a valid and effective data-

driven method for improving a human operator’s control of an a priori unknown dynamic sys-

tem. We also find the learned system models are generalizable across a population of users.

Finally, we find that these models can be learned online in a fast, data-efficient manner.

4.5.1. Efficacy of Model-based Shared Control

To evaluate the efficacy of our model-based shared control algorithm, we compute the av-

erage success rate under each control paradigm and examine the distribution of executed tra-

jectories. Our analysis compares the User Only control condition to each of the shared control

conditions (Individual Koopman, General Koopman and Expert Koopman).

4.5.1.1. Task Success and User Skill. A trial is considered a success when the user is able

to meet the conditions defined in Section 4.4.3. We can interpret the success rate of a user, or

shared control system, on a set of trials as a measure of skill. The greater the skill, the higher

the success rate. By comparing the average success rate under the User Only control paradigm

with the average success rate under the shared control paradigms, we can analyze the impact of

the assistance provided by the autonomous partner.

The average number of successful trials produced in each control condition are displayed in

Figure 4.5. An analysis of variance shows that the choice of control paradigm has a significant

effect on the success rate (F (3, 59) = 4.58, p < 0.01). Post-hoc t-tests find that users under

the shared control conditions show statistically significant improvements in the success rate

when compared to their performance under the User Only control condition (p < 0.01, for all
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Figure 4.5. Number of successful trials under each control condition.

cases). No other pairings are found to be statistically distinct. This result demonstrates that

the assistance provided by the autonomous agent significantly improves the skill of the joint

human-machine system, thereby validating the efficacy of model-based shared control. It also

suggests that the source of the data used to learn the model may not be important in developing

helpful autonomous assistance in the shared control of dynamic systems (discussed further in

Section 4.5.2).

4.5.1.2. Distribution of Trajectories—Qualitative. We further analyze the different control

conditions through a comparison of the distribution of trajectories we observe in each condi-

tion. Unlike the success metric, this analysis is not based on task performance, and is instead

performed to evaluate the control skill exhibited by either the human operator alone or the joint

human-machine system. Figure 4.6 depicts trajectory plots which represent the most frequently

occupied sections of the state space. The plots are generated using data separated based on the



86

Figure 4.6. Trajectory plots which visualize the most frequently visited parts of
the state space. The data is broken down by control condition (columns) and
whether the trial was successful (rows). The plots are generated by overlaying
each trajectory with a low opacity and the intensity of the plots therefore repre-
sents more frequently visited portions of the state space.

control condition (columns) and whether the user was able to complete the task on a given trial

(rows).

The first distinction we draw is between the User Only control condition and the three

shared control conditions. In particular, the distribution of trajectories in the User Only condi-

tion depicts both larger excursions away from the target and lower levels of similarity between

individual executions. When we focus specifically on which parts of the state space users spend

the most time in (as represented by the intensity of the plots), we see two main clusters of high

intensity (around the start and goal locations) in the shared control conditions, whereas we see

a wider spread of high-intensity values in the User Only control condition. This suggests more

purposeful motions under the shared control conditions.
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The second distinction we draw focuses on a comparison between the successful and unsuc-

cessful trials. Specifically, we note that trajectory plots computed from the failed trials under

the shared control conditions demonstrate similar properties (e.g., the extent of the excursions

away from the target, as well as two main clusters of intensity) to the trajectory plots computed

from successful trials under the shared control conditions. This suggests that users may have

been closer to succeeding in these tasks than the binary success metric gives them credit for.

By comparison, the trajectory plot computed from the failed trials under the User Only control

condition depicts a significantly different distribution of trajectories with less structure. Specifi-

cally, we observe numerous clusters of intensity that represent time spent far away from the start

and goal locations. This suggests that users were particularly struggling to control the system

in these cases.

4.5.1.3. Distribution of Trajectories—Quantitative. These observations are supported by an

evaluation of the ergodicity [59, 99] of the distributions of trajectories described above. We find

users under the shared control paradigm are able to produce trajectories that are more ergodic

with respect to the goal location then users under User Only control, which means that they

spend more a significantly larger proportion of their time navigating near the goal location under

shared control. To perform this comparison, we compute the ergodicity of each trajectory with

respect to a probability distribution defined by a Gaussian centered at the goal location (which

represents highly desirable states). This metric can be calculated as the weighted Euclidean

distance between the Fourier coefficients of the spatial distribution and the trajectory [103].

Similar to our qualitative analysis of the trajectory plots in Figure 4.6, we first compare

ergodicity between the different control conditions by analyzing all the trajectories observed
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under each condition. An analysis of variance showed that the effect of the shared control par-

adigm on trajectory ergodicity is significant (F (3, 640) = 12.97, p < 0.00001). Post-hoc t-tests

find statistically significant differences between the performance of the users in the User Only

control condition and users in the shared control conditions based on the individual, general

and expert datasets (p < 0.0005, p < 0.001, p < 0.0005, respectively). No other pairings

demonstrate statistically distinct results. We interpret this result as additional evidence that

model-based shared control improves the skill of the human partner in controlling the dynamic

system.

We further analyze the ergodicity results by separating the trajectories based on whether

they come from an unsuccessful or successful trial. An analysis of variance computed over

all control conditions showed that the effect of the shared control paradigm on trajectory er-

godicity is significant for both unsuccessful (F (3, 310) = 6.60, p < 0.0005) and successful

(F (3, 325) = 7.20, p < 0.0005) trials. Post-hoc t-tests find statistically significant differences

between the performance of the users in the User Only control condition and users in the shared

control conditions (p < 0.005 in all unsuccessful cases, p < 0.05 in all successful cases). No

other pairings reject the null hypothesis. These results suggest that the shared control paradigm

is helpful in improving the user’s skills even when they provide input that is ultimately unsuc-

cessful in achieving the task. Furthermore, our shared control paradigm is helpful, even when

user’s are performing at their best. Thus, for both failed and successful trials, users exhibit a

greater amount of control skill than when there is no assistance.
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4.5.2. Generalizability of Shared Control Paradigm

We continue the evaluation of our human subjects study with an analysis of the generaliz-

ability of the learned system models and our model-based shared control algorithm. As reported

in Section 4.5.1, we find no statistical evidence that the source of the data used to train the model

impacts the efficacy of the shared control paradigm. When we compare the success rate of users

in each shared control condition, we find no statistically significant difference. However, we do

find a significant difference between the user’s performance under each shared control condition

and the User Only condition. The same result holds when we compare each control condition

along the ergodic metric described in Section 4.5.1 and visualized by trajectory plots in Fig-

ure 4.6. Taken together, these results suggest that the efficacy of the assistance provided by the

autonomous agent is independent of the source of the data used to learn a model of the joint

system. That is, models trained on data collected from an individual user generalize to a larger

population of human partners.

To further analyze the generalizability of the model-based shared control paradigm, we

evaluate the participants’ interactions with the outer-loop autonomous control. We are interested

in whether or not users agree more often with the autonomy when control signals are produced

based on models learned from their personal demonstration data. To evaluate this idea, we look

at the percentage of user inputs that are let through as control to the dynamic system based on

our control allocation method (MDA). The average agreement metric is broken down by control

condition and presented in Figure 4.7.

An analysis of variance shows that the effect of the source of the model data on the average

agreement is not significant in either the main thruster (F (2, 44) = 0.87, p = 0.43) nor the side

thruster (F (2, 44) = 0.38, p = 0.69). These results show a uniformity in the response to system
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(a) (b)

Figure 4.7. Average agreement between user and optimal control algorithm as
defined by the Maxwell’s Demon Algorithm (Equation (1)) along the (a) main
and (b) side thrusters.

state across users and suggest that the system is able to adapt to the person, instead of requiring

a personalized notion of the user and system.

We interpret this finding as further evidence of the generalizability of our model-based

shared control paradigm. In particular, we find that it is not necessary to incorporate demon-

stration data from individual users when developing model-based shared control. This result

replicates findings from our analysis of data collected under a shared control paradigm that

enforced a linear constraint on the model learning and policy generation techniques [31].

4.5.3. Online Learning Shared Control

We next evaluate our model-based shared control algorithm in an online learning paradigm.

Our evaluation considers the sample complexity of our model-based learning algorithm through

a comparison of the impact each shared control paradigm has on the skill of the joint system
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over time. Our statistical analysis is a comparison of the percent of participants who succeed

under each paradigm by trial number, shown in Figure 4.8. We remind the reader that users

participate in 15 trials of the Online Koopman condition while they participate in 10 trials of

the four other experimental conditions. For comparison we only plot the first 10 trials of the

Online Koopman data, though we note that the improved success rate is sustained over the final

five trials. From this plot, we can see that users in the Online Koopman shared control condition

start off performing poorly, but by around trial 7 start performing on par with the other shared

control conditions.

Here, we also note the number of trials used to train the model of the system and control

dynamics in each condition. In the Individual and Expert conditions, data is collected from 10

trials to train the model. In the General condition, data is collected from three different users

who each control the system for 10 trials each, which means the model is trained from a total of

30 trials. Finally, as discussed above, in the Online condition, the model is learned continuously

over the course of 15 trials.

To provide quantitative evidence of this visual trend, we perform the same types of statistical

analyses as in previous sections, but now include data from the Online Koopman as a fifth

experimental condition. For ease of discussion we refer to the Individual, General and Expert

Koopman model-based shared control conditions as the offline learning conditions, and the

Online Koopman model-based shared control as the online learning condition. As users provide

more data in the Online Koopman condition than in all other conditions, we perform two sets of

analyses. First, we compare the data from the first ten trials from the Online Koopman condition

to all other control conditions. We then re-perform the same tests, but use the final ten trials

from the Online Koopman condition. By comparing these results, we can evaluate the efficacy
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Figure 4.8. Average percentage success by trial for the first 10 trials by control
condition. Users under all shared control conditions using models learned offline
(Individual, General, Expert) outperform the User Only control condition across
all trials. Users under the shared control condition using models learned online
(Online) start off performing poorly, but quickly begin to outperform the User
Only control condition and, in the end, achieve the same level of success as those
under the offline shared control conditions.

of the online learning paradigm, and also analyze the effect of the amount of data used during

the learning process.

4.5.3.1. Statistical Analysis of the First Ten Trials. An analysis of variance finds a statisti-

cally significant difference between the various control conditions along the primary success

metric (F (4, 74) = 5.35, p < 0.001). Post-hoc t-tests find that all offline learning conditions

significantly outperform the Online Koopman and User Only control conditions (p < 0.05 for

all cases). We do not find the same statistically significant difference between the User Only

and Online Koopman conditions. These results suggest that users under the online learning par-

adigm initially perform on par with how they perform under the user only control paradigm, but

worse than under the offline control conditions. This analysis is consistent with our expectations
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since, in the online condition, the model of the joint system is initialized randomly and therefore

does a poor job of assisting the user. However, it is also important that this online shared control

does not degrade performance in comparison to the User Only paradigm, suggesting that there

is little downside to employing the online learning paradigm during learning.

Figure 4.9. Number of successful trials under each control condition (includ-
ing an online learning paradigm). We find statistically significant differences
between the User Only condition and each shared control condition (p < 0.01).

4.5.3.2. Statistical Analysis of the Final Ten Trials. As a point of comparison, we now re-

run the same statistical tests using the final ten trials from the Online Koopman condition.

An analysis of variance finds a statistically significant difference between the various control

conditions along the primary success metric (F (4, 74) = 3.55, p < 0.05) (see Figure 4.9).

Post-hoc t-tests find that all shared control conditions (using models learned offline and online)

significantly out perform the User Only control paradigm (p < 0.01 for all conditions). This

result is different from our analysis of the first ten trials and suggests that the learned model
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improves significantly with more data and now is on par with the models learned in the offline

conditions. No other pairings show statistically significant differences.

The visual trend present in Figure 4.8 and the statistical analysis demonstrated in Figure 4.9

suggest that the Koooman operator is able to quickly learn an actionable representation of the

joint human-machine system. These results also demonstrate the efficacy of our model-based

shared control algorithm in an online learning scenario and in limited data regimes.

4.5.3.3. Covariate Shift. One final piece of qualitative analysis that we provide here relates to

a difference in the data used to learn the system dynamics model in the offline and online learn-

ing settings. In particular, in the offline learning paradigm, the data used to learn the system

dynamics model includes all of the observations collected during the human partner’s control of

the lunar lander (i.e. without any assistance). In contrast, in the online learning paradigm, data

is only collected, and used to learn the system dynamics model, when the input passes through

the MDA filter. One might imagine that this difference could lead to an issue known as the

covariate shift problem [118] (see Chapter 5); however, the similarity of the results in both set-

tings suggest this is not an issue for our system. One reason this may be true is that the covariate

shift problem tends to be less pervasive in system identification than in policy learning [20]. It

can pose an issue when the system exhibits state or time dependent dynamics, but the lunar

lander exhibits the same dynamics everywhere in the state space. Early experiments that tried

to learn the system dynamics model from random inputs suggest that it is particularly important

to learn how the lunar lander behaves near points of equilibrium, as this allows the autonomous

controller to develop stable policies. For this reason, we include a human-in-the-loop during

model learning, as the human operator often explicitly tries to maintain system safety.
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4.5.4. Linear and Nonlinear Model-based Shared Control

The final piece of analysis we perform in this chapter is an related to the impact that non-

linear modeling and policy generation techniques have on our model-based shared control par-

adigm. For this analysis we compare the User Only control condition to the three offline shared

control conditions.

(a) Average success rate under linear model-based
shared control and user only control.

(b) Average success rate under nonlinear
model-based shared control and user only control.

Figure 4.10. Comparison of linear and nonlinear model-based shared control
paradigms.

The average success rate of users under each control paradigm for both studies is presented

in Figure 4.10. In the linear study [31] we observe a trend (see Figure 4.10a) that suggests users

perform better under the shared control paradigm, but we do not find statistically significant
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evidence of this observation. In contrast, we find that model-based shared control using nonlin-

ear modeling and policy generation techniques does statistically improve the success rate when

compared to a User Only control paradigm.

One potential explanation for the difference we find in the results of the two studies is

that the nonlinear basis produces more accurate models of the system dynamics then the linear

basis. To explore this explanation, we evaluate the predictive capabilities of a Koopman operator

learned with a linear basis to one learned with a nonlinear basis. This analysis is performed by

comparing the predicted system states with ground truth data. We evaluate the error (mean and

variance) as a function of prediction horizon (a.k.a. the H-step error). Figure 4.11 depicts the

raw error (in meters) of Koopman operators trained using linear and nonlinear bases.

Figure 4.11. H-step prediction accuracy of Koopman operator models based on
linear and nonlinear bases. Error is computed as the Euclidean distance between
the predicted (x, y) values and the ground truth (x, y).

Our analysis of the predictive capabilities of the Koopman operator models demonstrates

that each is highly accurate. The nonlinear model does slightly outperform the linear model

as the prediction horizon grows, however, we find that both models are able to produce single-

step predictions with error on the scale of 10−3 meters. As a reminder to the reader, the state
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space is bounded with X ∈ (−10, 10), Y ∈ (0, 16). This analysis suggests that the choice of

basis function does not cause the observed difference in average success rate between the two

studies. Instead, the important design decision may be the choice of model predictive control

algorithm. In the linear study we use an infinite horizon LQR to produce autonomous control

policies, whereas in the nonlinear study we use a receding-horizon Model Predictive Control

(MPC) to produce autonomous control. Our interpretation of these results is that the receding

horizon nature of MPC is better suited to the visual planning approach that human operators use

when solving the lunar lander task.

4.6. Discussion

In this section, we highlight a number of main takeaways that stem from our analysis. To

begin, the results of our human-subjects studies demonstrate that our model-based shared con-

trol paradigm is able to (1) successfully learn a model of the joint human-machine system from

observation data, and (2) use the learned system model to generate autonomous policies that can

help assist a human partner achieve a desired goal. We evaluate the predictive capabilities of the

learned system models through a comparison to ground truth trajectory data (see Figure 4.11)

and evaluate the impact of the assistive shared control system through a comparison of perfor-

mance (success rate, see Figure 4.5) with a User Only (or natural learning) control paradigm.

All analyses support the idea that MbSC can help improve the control skill of a human operator

both when they are able to achieve a task on their own and when they are not.

Additional evaluations demonstrate that the learned system and control dynamics general-

ize across users, and suggests that,unlike in other human-machine interaction paradigms, per-

sonalization is not required for defining shared control paradigms of generic human-machine
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systems. Specifically, we find that the demonstration data used to learn the system and control

models does not need to come from an optimal, or expert, controller, and can instead come from

any human operator. Therefore, at a base level, the controller does not need to be personalized

to each individual user as the learned model captures all necessary information. This idea is

important for application in real-world scenarios where personalization of control paradigms

can be time-consuming, costly, and challenging to appropriately define.

We also demonstrate that our approach can be used in an online learning setting. Impor-

tantly, we find that the model is able to learn very quickly, from limited amounts of data. In the

Online Koopman condition, each trial took an average of 18 seconds, and therefore provided

180 data points. From our analysis in Section 4.5.3.2, we find that we are able to learn an effec-

tive model of the joint system after only 5 trials (or about 900 data points). Our model learning

technique is also well suited for an online learning paradigm as it is not computationally inten-

sive and can easily run at 50Hz on a Core i7 laptop with 8 GB of RAM. Additionally, we find

that, even during the learning process, the application of the online model-based shared control

algorithm does not significantly degrade the performance of the human operator.

Finally, we also evaluate the impact that nonlinear modeling and policy generation tech-

niques have on our model-based shared control algorithm [31]. In particular, we replace the

nonlinear modeling and policy generation techniques with linear counterparts and compare how

they impact the ability of a human operator to achieve a desired task. This requires using a non-

linear basis when computing the approximation to the Koopman operator and using nonlinear

model predictive control (SAC) to generate the autonomous policy. We find that the nonlinear

model-based shared control paradigm produces a joint human-machine system that is signifi-

cantly better along the primary performance metric (task success) then users under a user only
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control paradigm. The same result is not found from the data collected under a shared control

paradigm that enforced linear constraints (see Figure 4.10).

4.7. Conclusion

In this work, we introduce model-based shared control (MbSC). A particularly important

aspect of this work is that we do not rely on a priori knowledge, or a high-fidelity model, of

the system dynamics. Instead, we learn the system dynamics and information about the user

interaction with the system directly from data. We learn this model through an approximation

to the Koopman operator, an infinite dimensional linear operator that can exactly model non-

linear dynamics. By learning the joint system dynamics through user interaction, the robot’s

understanding of the human is implicit to the system definition.

Results from two human subjects studies (consisting of 32 total participants) demonstrate

that incorporating the learned models into our shared control framework statistically improves

the performance of the operator along a number of pertinent metrics. Furthermore, an analysis

of trajectory ergodicity demonstrates that our shared control framework is able encourage the

human-machine system to spend a significantly greater percentage of time in desirable states.

We also find that the learned system models are able to be used in shared control systems that

generalize across a population of users. Finally, we find that, using this approach, models can

be efficiently learned online. In conclusion, we believe that our approach is an effective step

towards shared control of human-machine systems with unknown dynamics. This framework is

sufficiently general that it could be applied to any robotic system with a human in the loop. Ad-

ditionally, we have made our code available online at https://github.com/asbroad/

model_based_shared_control + https://github.com/asbroad/koopman_

https://github.com/asbroad/model_based_shared_control
https://github.com/asbroad/model_based_shared_control
https://github.com/asbroad/koopman_operator_model_learning
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operator_model_learning, and include a video depicting a user’s control of the dy-

namic system and the impact of model-based shared control in the supplementary material.

https://github.com/asbroad/koopman_operator_model_learning
https://github.com/asbroad/koopman_operator_model_learning
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CHAPTER 5

Operation and Imitation under Safety-Aware Shared Control

The following chapter extends our data-driven model-based shared control (MbSC) para-

digm to scenarios in which we have no a priori knowledge of the user’s desired objective. In

these situations, the assistance paradigm cannot allocate control based on information related

to a desired task, or goal. Instead, we describe a SC paradigm that considers only information

related to the safety and stability of the dynamic system. The results of a human-subjects study

demonstrate that control-theoretic barrier constraints can be used to increase the general safety

of the joint system, without restricting the human partner from achieving unspecified tasks.

Additional analysis exhibits how the same shared control paradigm can be used to generate

autonomous policies that safely imitate the demonstrations provided by the human partner.

5.1. Introduction

Mechanical devices can be used to extend the abilities of a human operator in many do-

mains, from travel to manufacturing to surgery. In this chapter, we are interested in developing

a shared control methodology that further enhances the ability of a human user to operate dy-

namic systems in scenarios that would otherwise prove challenging due to the complexity of

the control problem (e.g., modern aircraft), the complexity of the environment (e.g., navigation

in a densely populated area), or the skill of the user (e.g., due to physical injury). A particularly

motivating domain is assistive and rehabilitation medicine. Consider, for example, the use of

an exoskeleton in rehabilitating the leg muscles of a spinal cord injured subject [45]. While
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these devices are designed explicitly to aid a user in recovering from trauma by rebuilding lost

muscular control, the complexity of the machine itself often requires that one or more physical

therapists assist the subject in operating the device during therapy (e.g., to provide stabilization).

Artificial intelligence can further improve the efficacy of these devices by incorporating auton-

omy into the control loop to reduce the burden on the human user. That is, if the autonomous

agent accounts for subpar (and potentially dangerous) control input, the human operator and

therapist(s) are freed to focus on important therapeutic skills.

In this chapter, we improve the effectiveness of joint human-machine systems by developing

a safety-aware shared control (SaSC) algorithm that assists a human operator in controlling a

dynamic machine without a priori knowledge of the human’s desired objective. In general,

shared control is a paradigm that can be used to produce human-machine systems that are more

capable than either partner on their own [105]. However, in practice, shared control systems

often require the autonomous agent to know the goal (or a set of discrete, potential goals).

While a priori knowledge of a desired set of goals may be a valid assumption in some domains,

it can also be a severely limiting assumption in many other scenarios. Therefore, instead of

allocating control based on whether the human operator’s input will improve the likelihood of

achieving a goal, we aim to allocate control based on whether the user’s control commands will

lead to dangerous states and actions in the future. Under this paradigm, the autonomous partner

develops a control strategy that is only concerned with the safety of the system, and is otherwise

indifferent to the control of the human operator.

Our safety-aware shared control algorithm can be used to improve the efficacy of human-

machine systems in two main ways:
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G1.: Improve a human operator’s control, and understanding, of a dynamic system in complex

and potentially unsafe environments.

G2.: Improve the value of Imitation Learning (IL) in the same domains, both by facilitating

demonstration and addressing the covariate shift problem [118].

Item G1 is important because control challenges can stem from a variety of issues including

the inherent complexity of the system, the required fidelity in the control signal, or the physical

limitations of the human partner. For this reason, there is often an explicit need for assistance

from an autonomous partner in controlling the mechanical device. Item G2 is important because

Imitation Learning can be used to further extend the capabilities of human-machine systems,

however demonstration may not always be feasible for the human partner given the aforemen-

tioned control challenges.

The main contribution of this work is a safety-aware shared control algorithm that improves

the efficacy of human-machine collaboration in complex environments, with the key feature

that it is possible for the user’s desired objective to remain unknown. In this algorithm, an au-

tonomous partner accounts for system- and environment-based safety concerns, thereby freeing

the human operator to focus their mental and physical capacities on achieving high-level goals.

Our algorithm (Section 5.3) describes a novel interaction paradigm that extends the viability

of complex human-machine systems in various scenarios including those in which the human’s

skill is limited or impaired. We also provide an analysis of our algorithm (Section 5.4) with

a human subjects study consisting of 20 participants conducted in a series of challenging sim-

ulated environments. Finally, we show how the same algorithm can be used to improve the

human operator’s control skill and the power of Imitation Learning (Section 6.7).
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5.2. Background and Related Work

The most closely related shared control paradigms in prior literature are those that are safety,

or context, aware. In this area, researchers have explored the impact of autonomous obstacle

avoidance on teleoperated robots in search and rescue [127]. Additionally, safety is a par-

ticular concern when the human and robot partner are co-located, such as with autonomous

vehicles [15]. Co-located partners are also common in assistive robotics where researchers

have developed environment-aware smart walkers [87] to help visually-impaired people avoid

dynamic obstacles.

Related to our goal of generating autonomous policies that recreate the behavior demon-

strated during system operation, there is prior work in the field of Imitation Learning (IL).

Most commonly, the demonstration data is provided by a human partner [19], though it can

come from variety of sources including trajectory optimization and simulation [94]. Exam-

ple data is commonly assumed to come from an expert (or optimal) controller [4]; however,

researchers also have explored techniques that use demonstrations provided by novice (or sub-

optimal) sources [154]. In this work we describe how Imitation Learning can be used even

when the human operator is not able to provide demonstration data on their own. We further

describe how our safety-aware shared control algorithm can be used to address the covariate

shift problem [118], a common issue in Imitation Learning that stems from the fact that the

data used to train the policy may come from a different distribution than the data observed at

runtime.

Lastly, there is also related work in the subfield of safety-aware Reinforcement Learning

(RL). In this domain, safe autonomous control policies are learned from exploration instead
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Figure 5.1. Flow chart of our Safety-aware Shared Control (SaSC) algorithm.
The operator focuses on task objectives, while the autonomy accounts for safety.

of demonstration. Examples include techniques that enforce safety during the exploration pro-

cess through linear temporal logic [9] and formal methods [63]. Researchers also have ex-

plored model-free RL as a paradigm to integrate the feedback of a human operator through

the reward structure during the learning process, and to share control with a human operator at

run-time [116]. Finally, researchers have considered learning safe policies from demonstration

by computing probabilistic performance bounds that allow an autonomous agent to adaptively

sample demonstration data to ensure safety in the learned policy [35].

5.3. Safety-Aware Shared Control

In this chapter, we contribute a specific implementation of a class of algorithms that we

refer to as Safety-aware Shared Control (SaSC). SaSC can help users operate dynamic systems
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in challenging and potentially unsafe environments that would normally require expert-level

control. An analogous engineering solution is fly-by-wire control of modern aircraft [130]. In

these systems, the onboard computer accounts for many of the intricacies of the control problem

allowing the pilot to focus on high-level tasks. Our SaSC algorithm takes this idea a step further

to account for unsafe actions related to both the system dynamics and the environment. Safety-

aware shared control consists of two components:

1.: A safe policy generation method for the autonomous agent.

2.: A control allocation algorithm to safely integrate input from both partners.

The high-level algorithm is depicted in Figure 5.1. Points 1 and 2 are described in more detail

in subsections 5.3.1 and 5.3.2. Relevant policy notation is below:

• πh Human operator’s policy

• πsa−a Safety-aware autonomous policy (has no task information)

• πsa−sc Safety-aware shared control policy

• πil Imitation Learning policy

• πil−sc Imitation Learning policy under safety-aware shared control

5.3.1. Safety-Aware Autonomous Policy Generation

To implement our safety-aware shared control algorithm, we must first develop an au-

tonomous control policy that is capable of safely controlling the dynamic system in question

(policy πsa−a in Section 5.3). In this chapter, we utilize Model-based Optimal Control [20]

(MbOC). MbOC learns a model of the dynamic system directly from data, which is then in-

corporated into an optimal control algorithm to produce autonomous policies. Here, we learn
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a model of the system and control dynamics through an approximation to the Koopman opera-

tor [82]. Further details of this modeling technique are presented in Section 5.4.2.1.

Given a learned model of the system dynamics, we can then compute a control policy by

solving the finite-horizon nonlinear Model Predictive Control (MPC) [115] problem defined by

a cost function of the form

(5.1) J(x(t), u(t)) =

∫ tf

t=0

l(x(t), u(t)) + ltf (x(t))

where

(5.2) ẋ(t) = f(x(t), u(t)), x(0) = x0

and f defines the nonlinear system dynamics, x(t) and u(t) are the state and control trajectories,

and l and ltf are the running and terminal costs, respectively.

To solve the optimal control problem, we use Sequential Action Control (SAC) [17], an

algorithm designed to iteratively find a single action (and time to act) that maximally improves

performance. Data-driven model-based, and model-free, optimal control algorithms have been

experimentally validated with numerous dynamic systems [7] including joint human-machine

systems [31] [116].

To address the main focus of this chapter, we specify a control objective that relates only

to system safety. Safety is defined with respect to geometric constraints based on obstacles in

the environment. Specifically, we use quadratic costs to deter unstable states and higher order

polynomial penalty functions to keep the system away from dangerous locations. Notably, the

cost function does not incorporate any task information. Therefore, if the autonomous partner’s
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policy is applied directly, the system will work to maintain a safe state but will not move towards

any specific goal. The cost function used in our work is described in Section 5.4.2.2.

5.3.2. Safety-Aware Dynamic Control Allocation

To assist the human partner in safely controlling the dynamic system, we define an outer-

loop control allocation algorithm that incorporates input signals from the human and autonomous

partners (policy πsa−sc in Section 5.3). There is, of course, a balance to strike between the con-

trol authority given to the each partner. If the outer-loop controller is too permissive and accepts

a significant portion of the human operator’s input, it may do a poor job enforcing the necessary

safety requirements. However, if the outer-loop controller is too stringent, it can negatively im-

pact the ability of the human operator to produce their desired motion. In this work, we balance

the control authority between the human and autonomous partners to increase the authority of

the human operator when the system is deemed to be in a safe state, and increase the authority

of the autonomy when the system is deemed to be in a dangerous state. Here, the autonomy

adds information into the system only when it is necessary to ensure safety.

Specifically, we allocate control using a variant of Maxwell’s Demon Algorithm (MDA) [142].

MDA uses information from an optimal control algorithm as a guide by which to evaluate the

input from another source. In this chapter, we contribute a safety-aware variant that we call

Safety-Aware MDA (Sa-MDA). Sa-MDA is described in full in Algorithm 2. Here, the unsafe

function describes whether the system is in an unstable or dangerous configuration with respect

to the environment (e.g., through barrier functions, see Section 5.4.2.2), uh is the input from

the human partner, ua is the input produced by the autonomy, 〈·〉 is the inner product, and u
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Algorithm 2 Safety-Aware Maxwell’s Demon Algorithm
1: if unsafe (system, environment) then
2: u = usa−a;
3: else
4: if 〈uh,usa−a〉 ≥ 0 then . When used with an IL policy
5: u = uh; . uh is replaced by uil
6: else
7: u = 0;
8: end if
9: end if

Maxwell’s
Demon

Algorithm

is the applied control. When a learned policy is used to mimic a demonstration uh is replaced

with uil (see Section 5.3.3).

5.3.3. Safety-Aware Shared Control Imitation Learning

We now describe how we use the data collected under shared control to produce autonomous

policies through Imitation Learning [19]. The goal here is to learn a policy πil that mimics the

behavior demonstrated by the human operator. To achieve this goal, we treat the data collected

under shared control πsa−sc as a supervisor in the policy learning process. Notably, this data,

and the associated learned policy, now contain task-relevant information, as provided by the

human operator during demonstration. Our goal, then, is to learn an autonomous policy that

minimizes the following objective

(5.3) J(πil, πh) = min
θ

∑
s∈ξ∈D

||πil(s)− πh(s)||22

where J is the cost to be minimized and s is the state. By minimizing J we learn a policy

that closely matches the policy demonstrated by the human partner. π(s) : s → u defines a

control policy which is parameterized by θ, πh represents the (supervisor) human’s policy and

πil represents the Imitation Learning policy.
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The autonomous policy is learned from a set D of trajectory data ξ recorded during the

demonstration phase. To generate πil, we use behavior cloning [88], a standard offline imitation

learning algorithm. Details of our specific implementation are provided in Section 5.4.2. As

described in Section 6.2, behavior cloning can fail to reproduce the desired behavior due to the

covariate shift problem [118] [88]. We address this issue with an autonomous policy πil−sc that

combines the learned policy πil with the safety-aware autonomous policy πsa−a (Algorithm 2).

By incorporating the same shared control algorithm used during data collection, we encourage

the system to operate in a similar distribution of the state space to what was observed during

demonstration. One can view this solution as a shared control paradigm in which the control is

shared between two autonomous agents: the autonomy mimicking the human control and the

autonomy enforcing safety constraints.

5.4. Empirical Evaluation

To evaluate the efficacy of our algorithm, we perform a human subjects study on a simulated

system exhibiting nonlinear dynamics in complex environments. In this evaluation, we compare

the efficacy of each policy presented in Section 5.3 except πsa−a, which is never executed and

is only used to keep πh and πil safe.

5.4.1. Experimental System

The experimental system consists of a simulated “lunar lander” (Figure 5.2), chosen to

demonstrate the impact that shared control can have on the safety of a joint human-machine

system when the control problem and environment are complex. The lunar lander exhibits non-

linear dynamics and can easily become unstable as it rotates away from its point of equilibrium.
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Again, in this experiment safety is defined with respect to hard geometric constraints. Addition-

ally, two of the experimental environments contain obstacles that must be avoided to stay safe

(see Figure 5.2). The system and environment are implemented in the Box2D physics engine

based on the environment defined in OpenAI’s Gym [34].

The lunar lander is defined by a six dimensional vector which includes the 2D position and

heading (x1−3) and their rates of change (x4−6). The control input is a continuous two dimen-

sional vector which represents the throttle of the main (u1) and rotational (u2) thrusters. The

first environment includes only the lunar lander and the ground surface (Fig. 5.2, left). This

environment illuminates the challenges associated with maintaining the stability of a complex

dynamic system, while simultaneously executing unspecified behaviors. The second environ-

ment incorporates dynamic obstacles that obstruct the motion of the system (Fig. 5.2, middle).

In this environment, a series of circular obstacles move across the screen at the same height

as the lander (one at a time). The third environment includes two static obstacles that force

the operator to navigate through a narrow passageway, increasing the required control fidelity

(Fig. 5.2, right).

Figure 5.2. Visualization of lunar lander (enlarged) and experimental environ-
ments. A trial is complete when the lander moves across the green line boundary.
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5.4.2. Implementation Details

5.4.2.1. Model Learning. We learn a model of the system and control dynamics using an ap-

proximation to the Koopman operator [150], which has been validated on numerous systems [7],

including human-machine systems [31]. The Koopman is a linear operator that can model all

relevant features of nonlinear dynamical systems by operating on a nominally infinite dimen-

sional representation of the state [82]. To approximate the true Koopman operator one must

define a basis. In this chapter, we define φ = [1, x1, x2, x3, x4, x5, x6, u1, u2, u1 · x1, u1 · x2, u1 ·

x3, u1 ·x4, u1 ·x5, u1 ·x6, u2 ·x1, u2 ·x2, u2 ·x3, u2 ·x4, u2 ·x5, u2 ·x6, u1 ·cos(x3), u1 ·sin(x3), u2 ·

cos(x3), u2 · sin(x3)], where x1−6 represent the system state variables and u1−2 represent the

control input variables. The specific basis elements used in this (and the previous) chapter are

chosen empirically and represent a reduced set of features that describe the full state and control

space, as well as the interaction between the user’s input and the state. Data-driven methods

(e.g. sparsity-promoting DMD [75]) can be used to automatically choose a proper set of basis

functions (see Chapter 6).

5.4.2.2. Safety-Aware Autonomous Policy Generation. To compute an autonomous policy

that is solely concerned with the safety of the system, we define a cost function (Equation (5.1))

that considers two notions of safety: stability around points of equilibrium and collision avoid-

ance,

l(x) =

stabilization︷ ︸︸ ︷
Diag[0, 0, 15 · x3, 1 · x4, 1 · x5, 10 · x6]2 +

obstacle avoidance︷ ︸︸ ︷
Diag[(x1 − o1), (x2 − o2), 0, 0, 0, 0]8
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where (o1, o2) is the position of the nearest obstacle in 2D space. This cost function (i) pe-

nalizes states that are far from points of equilibrium using a quadratic cost and (ii) prevents

the system from entering dangerous portions of the state space using polynomial barrier func-

tions [25]. The stabilization term ensures that the lunar lander does not rotate too far away from

upright—if this happens, the lander’s main thruster can no longer be used to counteract gravity,

a situation that commonly leads to catastrophic failure in rockets. We therefore penalize both

the position and velocity of the heading term. We additionally penalize the x and y velocity

terms as momentum can significantly reduce the time a controller has to avoid collision. Fi-

nally, the obstacle avoidance term simply acts to repel the system from the nearest obstacle.

Importantly, if this policy is applied on its own (without any input from the human partner),

the lander will simply attempt to hover in a safe region, and will not advance towards any goal

state. In our implementation, the obstacle avoidance term does not include any penalties based

on the velocity (or momentum) of the system and therefore cannot guarantee safety. However,

in future work, we plan to define barrier functions that provide strong safety guarantee [93].

Notably, the safety-aware autonomous policy only adds information into the control loop

when the system is deemed to be unsafe (see Algorithm 2). Otherwise the user’s commands

are, at most, simply blocked by the autonomy. This can be thought of as an accept-reject-

replace shared control paradigm [78]. We define the unsafe function based on an empirically

chosen distance to the nearest obstacle. Therefore, if the system gets too close to an obstacle,

the autonomy’s signal is sent to the system, otherwise the human’s input is accepted or rejected,

according to the MDA filter. Here we note that the structure and weights in the defined cost

function, as well as the pre-defined distance metric, are specific to the experimental system;

however, there are generalizable principles that can be used to develop similar cost function
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for other systems. For example, system stability can generally be improved by defining costs

that help reduce dynamic features to kinematic features, while obstacle avoidance terms can be

defined using additional information from the learned system model.

5.4.2.3. Imitation Learning. A neural network is used to learn a control policy that mimics

successful trials demonstrated by the human partner. The input is the current state (x1−6) and

the output is the control signal (u1−2) sent to the system. The control signal is discretized

(−1.0 to 1.0 in increments of 0.5) and the problem is therefore cast as a classification instead

of regression. There are three hidden layers in the neural network—the first has 32 nodes, and

the following two layers have 64 nodes. Each hidden layer uses ReLu as an activation function.

The final layer uses a softmax activation. We use categorical cross entropy to compute the loss

and RMSProp as the optimizer.

5.4.3. Study Protocol

The human subjects study consisted of 20 participants (16 female, 4 male). All subjects

gave their informed consent and the experiment was approved by Northwestern University’s

Institutional Review Board. Each participant provided demonstrations of novel behaviors in

all three of the environments, under both a user-only control paradigm and our safety-aware

shared control paradigm. There was no goal location specified to the participants; instead a trial

was considered complete when the human operator navigated the lunar lander across a barrier

defined by the green line in the environment (see Figure 5.2). The specific trajectory taken by

the lander during a demonstration was up to the participant. The operator used a PS3 controller

to interact with the system. The joystick controlled by the participant’s dominant hand fired the

main thruster, and the opposing joystick fired the side thrusters.
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Subjects were asked to provide 10 demonstrations per environment (3 total) and per control

paradigm (2 total), resulting in a total of 60 demonstrations per participant. The environments

were presented in a randomized and counterbalanced order. Participants were assigned to one

of two groups, where Group A (10 subjects) provided demonstration data in each environment

under user-only control first, and Group B (10 subjects) provided demonstration data under

shared control first. Group assignment was random and balanced across subjects.

5.5. Experimental Results

We find that our SaSC algorithm significantly improves the user’s skill with respect to a no-

assistance baseline (Figure 5.3). Additionally, we find that our SaSC algorithm can be used as

a training mechanism to improve a subject’s understanding and control of the dynamic system

(Table 5.2). Finally, we show how the same shared control technique can be used to extend the

Imitation Learning paradigm (Figure 5.4 and 5.5). These findings are discussed in detail in the

following subsections.

5.5.1. Safety-Aware Shared Control Enables Successful Demonstration

To address item G1, the primary metric we evaluate is a binary indicator of control com-

petency: the occurrence of safe, successful demonstrations, indicated by navigating the lunar

lander beyond the green border. We first analyze data collected from all three experimental

environments together. We then segment the data based on the specific environment in which

it was collected and re-perform our analysis (Figure 5.3). We use the non-parametric Wilcoxon

signed-rank test to statistically analyze the data.
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The results of the statistical tests revealed that our described shared control paradigm sig-

nificantly improved the human partner’s control skill (p < 0.005). In particular, we find that

participants provided safe demonstrations of the desired behavior in 96.0% of the trials pro-

duced under the shared control paradigm versus 38.5% of the trials produced under the user-

only control paradigm. Additionally, the statistically significant result holds when we compare

the control paradigms in each experimental environment separately (p < 0.005 in all cases).

Recall that the shared control paradigm does not provide any task-related assistance, but

rather only safety-related assistance. We therefore interpret the increase in task success as ev-

idence that our SaSC algorithm helps subjects exhibit greater control skill, and an associated

increased ability to provide demonstrations of novel behaviors. Additionally, we note that in

some experiments conducted under user-only control, subjects were not able to provide any suc-

cessful demonstrations in a given environment. This suggests that safety-aware shared control

Figure 5.3. Average fraction of successful trials under each control paradigm in
each environment. The plots represent data collected in all environments (left),
and broken down by each individual environment (right). In all cases, partic-
ipants under the shared control paradigm provide safe demonstrations signifi-
cantly more often than under the user-only control paradigm (*** : p < 0.005).
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may be a requirement for functional usage of dynamic systems in some of the more challenging

domains that motivate this work. This finding is also important when considering our ability

to train autonomous policies that mimic behaviors demonstrated by the human operator (see

Section 5.5.4).

5.5.2. Impact of Safety-Aware Shared Control on Trajectory Features

As discussed in Section 5.3.2, safety-aware shared control impacts features of the trajecto-

ries produced by the human operator. For example, by rejecting a majority of the user’s inputs

the SaSC algorithm can ensure system safety, but it will not allow the user to execute desired

behaviors. To evaluate how our SaSC algorithm impacts the user’s abilities to demonstrate a

novel behavior, we compare a number of quantitative metrics that go beyond safety and relate

specifically to features of the trajectories (Table 5.1). Here, we analyze only the successful

demonstrations provided under each control paradigm.

Metric Control Env 1. Env 2. Env 3

Path Length (m) User 30.0 ±2.4 33.8 ±4.8 28.3 ±0.8
Shared 27.7 ±1.1 34.4 ±2.3 30.5 ±2.2

Trial Time (s) User 15.5 ±3.5 18.6 ±5.6 22.4 ±5.9
Shared 27.0 ±7.8 30.0 ±7.4 30.4 ±6.8

Final Speed (m/s) User 23.6 ±6.8 23.8 ±6.2 14.5 ±5.0
Shared 7.9 ±2.8 9.6 ±4.5 7.9 ±1.9

Final Heading (deg) User 45.5 ±73.5 79.5 ±79.8 39.6 ±46.0
Shared 2.7 ±10.4 6.4 ±22.0 3.5 ±5.9

Table 5.1. Mean and standard deviation of trajectory metrics computed from
successful demonstrations. Path length is not impacted significantly by SaSC,
but shared control does result in trajectories that take longer to execute, have
slower final speeds, and are more upright (stable) in their final configurations.
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Our analysis shows that the safety-aware shared control paradigm impacts not only the

ability of a user to provide demonstrations, but also how they provide demonstrations. In all

environments, we find that participants produced trajectories of nearly equal length under both

control paradigms. However, under the user-only control paradigm participants produced suc-

cessful demonstrations in less time, with a greater final speed and in a state that is rotated

further away from the point of equilibrium than under the shared control paradigm. Moreover,

in Environments 1 and 2 (the less constrained environments), participants were able to produce

demonstrations that were safe over the course of the demonstrated trajectory, but unstable in

the final configuration. While these were counted as successful demonstrations, they require

less control skill than trajectories that end in a stable configuration. This suggests that SaSC

improves control skill in ways not fully captured by the binary success metric.

5.5.3. Safety-Aware Shared Control as a Training Mechanism

As a final piece of analysis addressing item G1, we examine whether experience under a

safety-aware shared control algorithm improves human skill learning. To evaluate this idea, we

compare the user-only control trials of Group A (user-only condition first) with those of Group B

(user-only control condition second). We segment the data based on the specific environment in

which it was collected and use the non-parametric Mann-Whitney U test to statistically analyze

the results. We display data and the results of the described statistical tests in Table 5.2.

The important take-away from these results is that shared control allows users to operate

human-machine systems safely during their own skill learning, and that this practice then trans-

lates to skill retention when the assistance is removed. In the most challenging environment,
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Environment 3, we see the largest raw difference (+18%) in success rate between the two co-

horts and a statistically significant result (p < 0.005). Notably, zero participants provided any

successful demonstrations in this environment when the data was provided under the user-only

control paradigm first. We also see a relatively large, but not statistically significant, differ-

ence in raw percentage points in Environments 1 and 2 (+10% and +9%) which might become

statistically significant with more data.

Under this paradigm, we can allow users to learn naturally while simultaneously ensuring

the safety of both partners. For systems where failure during learning is not acceptable (e.g.,

exoskeleton balancing), safety-aware shared control becomes a requirement in enabling human

skill acquisition: without some sort of safety assistance, operators are simply not able to control

the system.

5.5.4. Safety-Aware Shared Control Improves Imitation Learning

To address item G2, we examine whether learned policies are capable of reproducing the

behavior demonstrated by the human operator. Our evaluation is based on a comparison of

trajectories generated by Imitation Learning with (πil−sc) and without (πil) safety-aware shared

control at runtime. We provide visualizations of 10 successful reproductions of the demon-

strated behaviors in Environments 2 and 3 in Figures 5.4 and 5.5, respectively.

User-Only First User-Only Second Difference Stat. Significance
Env 1. 67 % 77 % +10 % p > 0.05
Env 2. 35 % 44 % +9 % p > 0.05
Env 3. 0 % 18 % +18 % p < 0.005
All 34 % 46 % +12 % p = 0.06

Table 5.2. Average success rate under user-only control over time.
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Notably, all trajectories produced by πil−sc safely avoid both the static and dynamic ob-

stacles. In Figure 5.4 we see that the learned policy πil−sc is able to mimic the behavior

demonstrated by the human operator. In Figure 5.5, we include visualizations of the trajec-

tories provided under user-only control (πh) and Imitation Learning without shared control (πil)

in Environment 3. Here, we also see that the user was unable to provide any successful demon-

strations without safety assistance. Similarly, the learned control policy (πil) was unable to

avoid obstacles in the environment without the safety assistance.

These two final points elucidate the need for our safety-aware shared control system in both

the demonstration and imitation phases. Without assistance from the SaSC algorithm, not only

is the human operator unable to demonstrate desired behaviors, but the learned neural network

policy fails to generalize.

Figure 5.4. Environment 2. A visualization of data provided by the human part-
ner under safety-aware shared control (πsa−sc : blue) and trajectories produced
autonomously (πil−sc : pink) using the learned control policy. The vertical and
horizontal position of the dynamic obstacles (black) over time are also displayed.
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Figure 5.5. Environment 3. Visualization of (1) demonstrations provided un-
der the user-only control paradigm (πh : yellow), (2) demonstrations provided
under our safety-aware shared control paradigm (πsa−sc : blue), (3) trajec-
tories produced autonomously using solely the Imitation Learning policy (πil
: purple, learned from πsa−sc demonstrations), and (4) trajectories produced
autonomously using the safety aware shared control imitation learning policy
(πil−sc : pink).

5.6. Discussion and Conclusion

In this chapter, we contribute a shared control paradigm that allows users to provide demon-

strations of desired actions in scenarios that would otherwise prove too difficult due to the

complexity of the control problem, the complexity of the environment, or the skill of the user.

We solve this problem through the application of shared control, allowing a human operator

to provide demonstrations while an autonomous partner ensures the safety of the system. We

validate our approach with a human subjects study comprised of 20 participants.
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The results of our human subjects study show that our safety-aware shared control paradigm

is able to help human partners provide demonstrations of novel behaviors in situations in which

they would otherwise not be able (Figure 5.3). Additionally, we find that our SaSC algorithm

can be used as a training mechanism to improve a human operator’s control skill by ensuring

safety during training (Table 5.2). Furthermore, we find that a combination of Imitation Learn-

ing with our safety-aware shared control paradigm produces autonomous policies that are capa-

ble of safely reproducing the demonstrated behaviors. In this work, the autonomous policies are

learned from data provided under shared control and for this reason, one must also consider how

the autonomy affects the demonstration data. We find that the shared control paradigm slows

the average speed of the system, but generally increases the stability (Table 5.1). Of course, it is

also possible to learn autonomous policies from the data provide under user-only control. How-

ever, when system safety is a requirement (e.g. co-located human-machine systems), shared

control can be thought of as fundamental for allowing users to provide demonstrations of new

behaviors. Allowing a system to fail during demonstration is often an unrealistic assumption

with real-world systems.

In future work, we plan to explore additional uses of data collected under a shared control

paradigm in learning autonomous policies that do not rely on continued safety assistance (e.g.

as seeds in Guided Policy Search [94]). Relatedly, there is evidence to suggest that policies

learned via Inverse Reinforcement Learning (IRL) may provide more robust autonomous poli-

cies [9, 35] than standard Behavior Cloning techniques, as described in this work. While full

IRL solutions likely require more data then our safety-aware imitation learning algorithm, the

improved robustness may be worth the training effort, and therefore remains an area of future

research. Finally, we also plan to explore a bootstrapped notion of shared control, in which
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the outer-loop autonomous controller originally considers only the safety of the joint system

and then dynamically updates to consider both the safety of the system system and task-level

metrics that describe the desired behavior of the human operator.
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CHAPTER 6

Highly Parallelized Data-driven MPC for Minimal Intervention

Shared Control

The following chapter builds on the general task-agnostic, data-driven model-based shared

control paradigm introduced in the previous chapter. Instead of relying on pre-specified control

barrier functions to improve safety, this chapter uses the learned system dynamics model to

predict safety over a receding horizon. The algorithm described in this chapter also introduces

an additional optimization procedure into the control loop to explicitly maximize the authority

granted to the human-in-the-loop. A human-subjects study evaluated with two different simu-

lated environments demonstrates that the described SC system improves the safety of the joint

system, while simultaneously adhering to the instantaneous desires of the human operator. A

post-study questionnaire revealed that our minimal intervention shared control paradigm was

preferred to a user-only control paradigm and produced very low levels of frustration, suggest-

ing that the described paradigm is a promising research direction for human-oriented shared

control. The end of this chapter highlights the results of a preliminary study that aims to inte-

grate data-driven MbSC with the trust-based personalization described in Chapter 3.

6.1. Introduction

Shared control is a paradigm that incorporates an autonomous partner into the control loop

of a robotic system to help a human partner achieve tasks they would otherwise be unable to

on their own [5]. This approach offers an alternative to fully autonomous robotic systems, and
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can be used to extend the efficacy of modern robots in human-oriented domains (e.g., surgery,

assistance and rehabilitation, search and rescue) through collaboration. In these domains the

two partners often need to communicate frequently and may even be co-located. The most

important consideration of the autonomous partner is therefore the safety of the joint system,

as unsafe behavior can lead to injury to the human operator. However, there are other features

that may be equally important when we consider the range of behaviors the human partner may

wish to perform, and the user’s acceptance of the assistance provided the autonomous partner.

In the majority of related work, the decision of which partner should be in control at a given

time is made based on (1) the safety of the system and (2) an evaluation of who would provide

better input to achieve a perceived, or known, task goal [105]. These task-specific systems can

frustrate the human partner when the user’s intended goal is difficult to predict, and they fail

out-right when there is no desired trajectory, task or goal the user is trying to achieve. Consider,

for example, a person operating a lower-limb exoskeleton for rehabilitation purposes. In this

scenario, task-level and performance-based metrics (e.g., the amount of area covered during a

search mission), are not important in determining which partner should be in control at a given

time, as there is often no explicit notion of a goal (i.e., the human operator may simply want

to wander around aimlessly). Instead, the person’s instantaneous desires are often the most

relevant feature, conditioned on the general safety of the system.

The question we consider in this chapter then is, how does one define safety constraints

that can enhance a user’s ability to operate complex, dynamic machines without artificially con-

straining their capacity to achieve unspecified behaviors? We address this gap in the literature

with a task-agnostic control allocation strategy that balances the human’s desires to achieve a
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wide range of possible behaviors, while simultaneously improving the safety of the joint system.

Our shared control paradigm therefore adheres to the following three ideals:

(1) safety is paramount,

(2) the user has no explicit task goal, and

(3) the autonomy should exert as little influence as possible.

In other words, the goal of our shared control paradigm is to allow the user to do whatever

they would like, so long as the safety of the joint system is satisfied. Additionally, when the

autonomous partner does intervene, it should only minimally modify the user’s input (a.k.a.,

the minimal intervention principal [13]). By adhering to these ideals, we hope to increase the

influence of the human partner and consequently improve their acceptance of the assistance

provided by the autonomy.

In this chapter, we develop a shared control algorithm that uses a highly parallelizable

sampling-based model predictive control (MPC) algorithm to generate the autonomous part-

ner’s policy. By sampling densely at uniform over the input space, we can evaluate a large set

of potential actions that the user may wish to take, without a priori knowledge of a specific

goal. We then use ideas from model-based reinforcement learning and model predictive control

to generate predicted trajectories (or imagined rollouts) that represent the configuration (and

safety) of the robot over a receding horizon. Conditioned on the predicted safety of the robotic

system, we iteratively select the sampled action that most closely matches the human partner’s

input, allowing the user to more safely move around the environment without adhering to a

single objective. Our approach relies on a representation of the human-machine system that

is valid both with, and without, a known analytical model. We focus on the latter case and

therefore learn a model of the joint system offline from data. We evaluate the efficacy of our
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approach with a human subjects study in two simulated environments. Additionally, we pro-

vide an open-source, scalable implementation of our algorithm in both environments that uses

a GPU for real-time interaction.

The main contributions of this chapter are therefore:

• A highly parallelizable sampling-based model predictive control algorithm for au-

tonomous policy generation.

• A predictive notion of safety that can evaluate the impact of a current action over a

receding horizon.

• A human-motivated cost function that only considers the instantaneous desires of the

human-in-the-loop and requires no knowledge of an explicit goal.

• The results of a human subjects study that evaluates the efficacy of, and user experience

with, our shared control paradigm.

• A GPU-implementation for real-time control of two simulated systems.

In Section 6.2 we provide background information and related work. In Section 6.3 we

detail the theoretically exact solution to our problem. In Section 6.4 we describe our approxi-

mation, why it scales well to the majority of devices in our target domain (human-centered ro-

botics), and provide analytical bounds on the sub-optimality of the applied control with respect

to the human’s desired motion. In Section 6.6 we describe the experiment we use to validate

our shared control paradigm through a human subjects study consisting of 20 participants in

two simulated environments. We also detail pertinent metrics to analyze the human partner’s

control skill and style, which are easily computable due to our sampling-based approach. In

Section 6.7 we present the study results which we discuss in Section 6.8. Finally, we describe

the results of a second, preliminary study that integrates the data-driven trust paradigm detailed
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in Chapter 3 with our model-based shared control algorithm in Section 6.9. We then conclude

in Section 6.10.

6.2. Background and Related Work

In this section we discuss background and related literature in both shared and fully au-

tonomous control, with a particular focus on human-oriented domains.

6.2.1. Shared Control

The majority of the shared control literature focuses on assisting a human operator when

a desired task is known a priori [80, 40] or predicted based on a model of the operator’s in-

tent [50]. For this reason, task success is often the primary metric of concern in analyzing

shared control systems, while the user’s desires relating to how a motion is achieved are often

disregarded. In some application domains there is a welcome trade-off between achieving the

desired high-level goal and intervention from the autonomous partner (e.g., with ground vehi-

cles on a roadway where a large amount of structure is enforced on the motion of the dynamic

system). In more human-centered domains, such as assistive and rehabilitation robotics, there

is often significantly less structure imposed on the motion of the machine and there may be no

explicit goal. For this reason, the same trade-off in task success and autonomous intervention

is not consistently accepted by users [54]. In these domains, it is instead of utmost importance

that the user retains a sense of personal agency and a feeling of control over the mechanical

device.
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Despite these differences, the most closely related work to our own (from a methodological

standpoint) can be found in the semi-autonomous vehicle literature. The semi-autonomous ve-

hicle paradigm is distinct from the concept of a fully autonomous self-driving cars as the auton-

omy’s goal is not to take full control of the vehicle, but instead to act as a guardian or intelligent

co-pilot [14], intervening on the person’s control when deemed necessary to ensure safety. For

this reason, there is a growing line of work that follows the minimum intervention principle in

the semi-autonomous vehicle domain [93]. For example, Schwarting et al. [125, 126] describe

a parallel autonomy framework that develops control trajectories for semi-autonomous vehicles

that minimize deviation from user-input and achieve task-specific metrics like road following

and contour tracking. Anderson et al. [13, 16] describe a geometric, homotopy-based algorithm

for computing free space in the environment. The human operator is then allocated full control

of the dynamic system so long as their input will not violate the constraints defined by the geo-

metric constructs. In this work we provide an alternative method (prediction) of computing safe

space in the environment that is simpler (e.g., there is no need to integrate constraints defined

by potentially complex geometries into the optimization problem), and acts over the entire con-

trol space (i.e., instead of only the steering angle [13, 40, 55]). Additionally, all prior work in

this area assumes a priori knowledge of the system dynamics whereas our technique extends to

models learned from data.

6.2.2. Sampling-based and Stochastic Optimal Control

From a control-theoretic standpoint, related work includes shared control algorithms that

build on ideas from sampling-based optimal control. For example, Carlson et al. have explored

the idea of controlling a wheelchair using safe mini-trajectories [40, 39], however, this work
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again relies on a priori knowledge of the human operator’s goal (or predicted goals based on

sensor information). Relatedly, Shia et al. [128] use a probabilistic model of the user’s potential

future inputs to achieve a pre-specified task, instead of allowing the operator the freedom to

move however they would like at each instant.

Our approach is also related to fully autonomous control solutions that rely on sampling-

based and stochastic optimal control methods. For example, Lavalle et al. propose Rapidly-

expanding Random Trees (RRTs) [90], which develop random trajectories through the state

space that are achievable as they are constrained by the system dynamics. More recently, Kousik

et al. extend this idea through a model predictive control algorithm that is based on the notion of

a forward reachability set [85, 86] to ensure safety. Finally, Williams et al. have proposed Model

Predictive Path Integral (MPPI) [135, 147] control as a method of solving the optimization

problem through path integrals. These ideas build on similar theory to our own (approximating

an optimal solution from a nominally infinite set of trajectories), however, they are again all

standardly defined in relation to a specified start and goal configuration. We instead consider an

approximation to the infinite set of trajectories that stem from a single point and extend in all

directions for a given time-horizon.

6.3. Safe Minimal Intervention Shared Control

In this section, we describe a theoretically correct (though computationally infeasible) solu-

tion to the problem of safe minimal intervention shared control. We begin by defining the shared

control problem mathematically. This problem can be posed in standard optimal control terms

with an additional constraint to incorporate information from both partners. That is, our goal is

to find an optimal action sequence ū, and corresponding state sequence x̄, that minimizes the
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Figure 6.1. Pictorial representation of our model predictive minimal interven-
tion shared control (MPMI-SC) paradigm. The autonomous partner samples
densely from the input space and generates a cloud of potential trajectories us-
ing a massively parallel processor. The human partner provides their desired
input. The optimal control solution is then computed according to the Minimal
Intervention Principle (MIP) and constrained based on the safety of the system
over a receding horizon.

cost

(6.1)

minimize
J

J(x(t), u(t)) =

T∫
t=0

l(x(t), u(t)) + lT (x(t))

subject to ẋ(t) = f(x(t), u(t)),

u(t) = g(uh(t), ua(t))

where x(t) and u(t) are the state and control trajectories, and l and lT are the running and

terminal costs. The optimization is subject to constraints f representing the nonlinear system

dynamics, and g representing the control allocation between the human (uh) and autonomous

partners (ua).
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Algorithm 3 Minimal Intervention Shared Control
1: procedure MI-SC(xt, uh)
2: Γ← all possible trajectories (γ) from x(t)
3: Γsafe ← γ ∈ Γ where γ /∈ ICS
4: ur ← arg min(uh, cost(Γsafe))
5: return ur
6: end procedure

6.3.1. Safe Control and Inevitable Collision States

The primary constraint in g relates to the safety of the human-machine system. That is, the

autonomous partner should only produce trajectories that remain safe over a receding horizon.

This requires ensuring that the system does not enter an Inevitable Collision State (ICS) [23, 62].

ICSs refer to configurations from which it is impossible to safely recover, regardless of the

control trajectory taken. So long as the system does not enter an ICS, it is possible to develop a

control strategy that results in continued safe interaction.

6.3.2. Minimum Intervention Principle

The second feature we embed in g is known as the minimal intervention principle (MIP)

which states that “an autonomous partner should only augment the human partner’s control by

the minimum amount necessary to achieve the desired result” [13, 93, 125]. By developing

a shared control algorithm that adheres to the MIP we maximize the influence of the human

partner’s control at each given moment.

6.3.3. Minimal Intervention Shared Control

The described solution to minimal intervention shared control is outlined in Algorithm 3.

Here Γ is the set of all possible trajectories γ that stem from the current state x(t), and Γsafe
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is the subset of safe trajectories. The inputs ur and uh are the signal sent to the robot, and the

signal provide by the human partner, respectively. The cost function describes how desirable a

trajectory is based on it’s distance from the human operator’s input. If the human’s command

does not lead to an ICS, their exact input will be passed to the system; otherwise, a perturbation

(computed as the minimum deviation required to ensure safety) will be applied to the control

signal.

This exact (full information) algorithm is computationally infeasible to compute online for

any reasonably complex human-in-the-loop system. In particular, the solution requires explor-

ing an infinite set of potential actions over a receding horizon to (1) ensure collision-free tra-

jectories [144], and (2) select the input that most closely matches the human’s desired action.

In this work, we instead propose an approximation to this solution that can be computed in

real-time.

6.4. Model Predictive Minimal Intervention Shared Control

To compute an approximation to the optimal solution described in the prior section, we make

a few key methodological choices. First, instead of considering all possible trajectories from

the current sate, we only consider a representative set that we generate by sampling densely

(from a uniform prior) over the input space and only at the present time. We then predict the

motion of the system over a receding horizon and reject any inputs that generate a trajectory

that violate the defined safety constraints. From the subset of inputs that do not produce unsafe

trajectories, we select the control signal that is closest to the human partner’s input. Notably,

this approach does not require a model of the user’s actions, or knowledge of a desired goal, as
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the user is free to dynamically adjust their objective at each timestep. We describe each step of

this algorithm in detail in the following subsections.

6.4.1. Model Representation and Data-driven Approximations

The majority of related work requires hand-written (and potentially complex) models of the

system and control dynamics [13, 93, 125]. In this work, we instead use a representation that is

simple (i.e., linear) regardless of the underlying dynamics and can be learned from data when the

model is not known a priori. This representation is known as the Koopman operator [82] and it

can be used to model nonlinear dynamical systems as a linear operator because it maps functions

of state to functions of state instead operating in the original state space. This representation is

valid both when we know an analytical model of the system in the standard state space [82],

and when we must learn the model from data [150].

In this work, we opt to learn the system model from data to demonstrate the efficacy of

our approach when we have no prior knowledge of the robotic system. In particular, we use

sparsity-promoting Dynamic Mode Decomposition [75] to select an appropriate basis and ap-

proximate the Koopman operator [82]. Data-driven Koopman operators have recently been

explored as a method of generating model-based control in robotics applications [7]. Unlike in

prior work, however, the choice of the Koopman operator representation is explicitly motivated

by our sampling-based policy generation method (see Section 6.4.2) and modern computational

resources (e.g., multi-core CPUs and GPUs). That is, the Koopman operator representation is

particularly well suited for sampling-based control as forward predicting the state of the system

requires only a single matrix-vector multiplication, and generating a large set of potential tra-

jectories requires only a single matrix-matrix multiplication. Both of these operations can be
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easily parallelized on a GPU [143]. Related work in model-based control for dynamic systems

has utilized linear representations (e.g., Bayesian linear regression [148]), however, to the best

of our knowledge, ours is the first work to develop a model-based controller the integrates a

Koopman operator representation with sampling-based optimal control.

6.4.2. Sampling-based Optimal Control and Predictive Safety

To generate a set of unconstrained potential trajectories the user may wish to execute, we

sample N inputs from an equally-spaced discretization of the control space. By relying on a

uniform prior, we make no assumptions about the user’s desired action at the next step (i.e.,

there is no model of the user). These samples can also be generated stochastically. However,

stochasticity has known downsides in human-in-the-loop systems. For example, inputs that

generate motion directly along a single dimension—a common desire of human operators—

are unlikely to be sampled as they exist in segments of the input space that have near zero

probability mass when sampling from a continuous distribution.

To ensure that our shared control algorithm only considers trajectories that satisfy the safety

constraint described in Section 6.3, we evaluate the configuration of the system at each time step

over the receding horizon in each predicted trajectory. If the system violates hard geometric

constraints (i.e. our definition of safety) that are defined with respect to the environment, we

reject the input that generated that trajectory. If, however, the system is safe over the entire

course of the predicted trajectory, we consider that input as a viable solution. This can be seen

as a predictive notion of safety as we evaluate the likelihood of a particular signal leading to a

catastrophic failure by observing how we expect the controlled device to evolve over time.



136

Algorithm 4 MPMI-SC
1: procedure MPMI-SC(t, xt, uh)
2: ξ ∼ UMxN . unbiased control samples
3: for i in N in parallel do . forward predict system
4: tp, xp, safe← t, xt,True
5: while tp < t+ T and safe do . prediction
6: xp ← f(xp, ξ(i)) + zi . zi is Gaussian noise
7: safe = isSafe(xp) . system safe at xp
8: tp = tp + ∆t . ∆t is the timestep
9: end while

10: if safe = True then . safe over full trajectory
11: store← ξ(i)
12: end if
13: end for
14: ur ← arg min(cost(ξ(i), uh)) ∀ ξ(i) ∈ store
15: return ur . signal is safe and adheres to MIP
16: end procedure

6.4.3. Model Predictive Minimal Intervention Shared Control

The full Model Predictive Minimal Intervention Shared Control (MPMI-SC) approach can

be seen in Fig. 6.1 and is outlined in Algorithm 4. The inputs are the current time t, the current

state xt and the human partner’s input uh. ξ is the sampled control, U is the distribution the

control is sampled from,M is the dimensionality of the input space,N is the number of samples,

and T is the prediction horizon. During forward prediction (Line 6), zi is sampled i.i.d. from a

white noise Gaussian process to account for inaccuracies in the dynamics model. Notably, this

computation is done in parallel on a GPU. The learned system model f(x, u) predicts the state

xp at the next timestep tp, which is evaluated for safety (based on hard geometric constraints).

The cost function minimizes the influence of the autonomous partner, and ur is the control

signal sent to the robot.
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6.4.4. Minimal Intervention Principle and Expected Deviation

An additional benefit of our sampling-based approach is that we can provide an explicit

bound on the sub-optimality of the applied control with respect to the user’s instantaneous

desires. In particular, the deviation between the user’s input and the applied control signal

(when the user input is safe) is upper bounded by half the distance between the sampled inputs1.

This can be computed based on the number of samples generated at each timestep and the

Lebesgue measure [132] of the control space. This relationship is described in Equation (6.2).

(6.2) E[‖uh, ur‖] =
λ∗(U)

2N

where uh is the human partners input, ur is the signal sent to the robot, and ‖u, v‖ is the Eu-

clidean distance. λ∗(U) is the n-dimensional volume (i.e., Lebesgue measure) of the bounded

input space and N is the number of samples. As the number of samples grows (N → ∞), the

maximum deviation between the user’s input and the applied signal shrinks to 0. However, we

also note that while the number of samples (denominator) grows linearly, the Lebesgue mea-

sure (numerator) grows exponentially with each additional control dimension (i.e., the measure

is defined as the Cartesian product of the intervals of each dimension). This describes a poten-

tial issue in the scalability of our sampling based solution; however, this issue is mitigated in

the majority (if not all) of our application domains as the dimensionality of the input generally

remains low as the human operator must capable of providing input to the system (e.g., using

a joystick). The interval of each control dimension also generally remains small (e.g., [-1, 1]

1Note, an equally spaced discretization (or a uniform prior) provides the tightest bound on the maximum deviation
between the user’s input and the applied control signal when we have no knowledge of their desired motion.
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or [0, 1]) so that it is understandable by the human partner. A more in-depth discussion of the

scalability of our algorithm is presented in the following section.

6.5. Details of Highly Parallelized Implementation

Sampling-based optimal control algorithms are a classic example of “embarrassingly paral-

lel” computation. To compute an optimal control strategy these approaches integrate informa-

tion from a large number of sampled trajectories that are generated completely independently

of one another. Importantly, the expected optimality of the solution generated through these

techniques increases with the number of trajectories considered. For this reason, massively par-

allelized computer architectures (e.g., GPUs and FPGAs) are a natural choice to improve the

speed and efficacy of sampling-based optimal control algorithms for real-time applications. We

begin this section with a brief introduction to how GPU architectures differ from standard CPU

architectures (see Section 6.5.1). We then describe what portions of our algorithm are paral-

lelizable and provide a visualization for the aid of the reader (see Section 6.5.2). Finally, we

end with a discussion of the scalability of our algorithm (see Section 6.5.3).

6.5.1. CPU vs GPU Architectures

Central processing units (CPUs) are designed for serial computation that requires potentially

complex control logic, while graphics processing units (GPUs) are designed to perform highly

parallel multi-threaded computation. From a hardware design perspective this means that CPUs

have larger control blocks, larger on-board cache and a smaller number of arithmetic logic units

(ALUs). In contrast, GPUs are designed with smaller control blocks, less on-board memory

and a significantly larger number of ALUs (see Fig. 6.2).
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Figure 6.2. Pictorial representation of generic CPU and GPU architectures [1].

GPUs are therefore well suited to solve arithmetic-heavy computations in data-parallel sce-

narios such as we find in the algorithm described in this paper. In the next section, we describe

key implementation details we consider to properly take advantage of the GPU hardware and

improve the speed of our shared control paradigm.

6.5.2. GPU Implementation of MPMI-SC

In this section, we focus our description on how we achieve instruction-level parallelism.

Parallel computation devices can also be used to speed up calculations through algorithm-level

parallelism, however, we note that our shared control paradigm is already highly-parallelized at

this level as it relies on sampling-based techniques.

The important insight from Algorithm 4 is that the for loop on Line 3 is performed in par-

allel. That is, each control sample (from a uniform distribution) is used to generate a potential

trajectory that the human partner may wish to take. Each resulting trajectory is therefore gener-

ated independently of the other trajectories and is done so in parallel on the GPU. Here, we note

that the main part of the MPMI-SC algorithm happens inside this initial for loop, suggesting

that the vast majority of the computation can be parallelized.
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To implement this algorithm on a GPU, we rely on NVIDIA’s CUDA API [1]. This platform

refers to functions as compute kernels which are launched in parallel blocks of threads on an

NVIDIA GPU. The order in which a given thread runs on a block is not guaranteed, but CUDA

supports syncing functions to ensure that all threads have finished running before moving on to

additional computation. To improve the instruction-level parallelism of our code, we follow the

principles collected by [113]. In particular, key implementations features are:

• minimize memory bandwidth delays by reducing the number of cross-device copies,

• minimize kernel launches through kernel fusion [57], and

• use shared memory when possible to allow fast data access by all threads in a single

block.

In contrast to [113], we found the cuBLAS optimizations beneficial during the forward pre-

diction step of our algorithm. This relates directly to our choice of system modeling technique—

the Koopman operator [82]. Unlike related work that uses complex representations (e.g., Neural

Networks) to perform sampling-based optimal control [149], the Koopman operator can be rep-

resented as a single matrix and can therefore forward predict the motion of a system through

highly optimized matrix-multiplications. Additionally, we note that selecting the block size and

number of blocks has a large impact on the efficiency of the algorithm. We use a principled for-

mula to select the optimal number of blocks based on the block size and the number of samples

(see code).

Figure 6.3 is the data flow diagram used to guide our implementation and it highlights the

principles defined above. Again, following the structure described by [113], we use the CPU as

a high-level controller to ensure correct serial processing of the data and minimize the number
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Figure 6.3. Pictorial representation of the data flow of our algorithm on
a CPU and GPU. This data flow can be observed in the main callback
(i.e., mpmi cb) in the two main files in the associated codebase (i.e.,
shared control balance bot.cpp and shared control race car.cpp).

of kernel calls to reduce overhead. Notably there are only two copy operations per iteration—

once at the beginning and once at the end—to maximize throughput. Within the main for loop,

there is a non-parallelizable while loop used to forward predict the state of the system. This

computation must be done in sequence as the state of the system at each time-step depends

on the prior state. Importantly, however, this computation can still be carried out on the GPU.

Additionally, it only requires a single kernel call per time-step and zero memory copies. To en-

sure fast safety checks on the GPU, all relevant environmental information is loaded into shared

memory so all parallel threads have access to the information. A final important implementation

detail is that we re-project (on the GPU) the state into the Koopman space after each prediction

iteration.
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6.5.3. Scalability

In this section we discuss the scalability of our proposed algorithm. The main factors we

must consider here are:

• the number of control samples,

• the length of the receding horizon, and

• the size of the basis used to project the state into the Koopman space.

The number of control samples defines (1) the set of potential actions the user can choose

from, and (2) the number of trajectories we must evaluate for safety. The later computation re-

quires forward predicting the state of the system over a receding horizon. While each trajectory

must propagate sequentially, the set of trajectories can be computed independently in parallel

on a GPU. The limiting factor therefore is the number of blocks and threads on the particular

GPU.

The length of the receding horizon also has a direct impact on the run-time of our algo-

rithm. This computation must be performed in serial for each individual control sample. Serial

computation is less efficient on a GPU then on a standard CPU [1] which means that shorter

time-horizons result in faster overall run-times. However, time-horizons that are too short will

result in collision predictions that are not computed early enough to be useful when intervening

to improve safety. The limiting factor here is the clockrate of the particular GPU.

Finally, the size of the basis used to project the state into the Koopman space also impacts

the efficiency of our algorithm. The main effect of this variable is on the efficiency of the for-

ward prediction computation which requires a series of matrix multiplications. It takes between

O(n2.4) − O(n3) to multiple two n x n matrices, depending on the matrix multiplication al-

gorithm used. These computations can be done quicker on a GPU than on a CPU [143], but
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again, a larger basis (and therefore larger matrices) require more powerful GPU hardware. In

this work we used an nVidia GeForce GTX 860M, a low-power 2GB GPU, and therefore note

that the speed of this system can be further increased with more powerful hardware.

6.6. Experimental Evaluation

We validate our Model Predictive Minimal Intervention Shared Control (MPMI-SC) algo-

rithm with a human subjects study in two simulated environments which we describe below.

6.6.1. Simulated Environments

(a) Simulated balance bot. (b) Simulated race car.

Figure 6.4. Pictorial representation of simulated environments.

The first dynamic system that users operate is a simulated balance bot (Fig. 6.4a). When

controlling this system, users are told (1) that they are free to move around the environment

however they would like, and (2) that they should try to make sure that body of the robot

does not collide with the ground (i.e., the safety constraint). This can be challenging for a

novice operator due to the stabilization requirements. The system is based on an open-source
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package [41] developed using the PyBullet physics engine. The observation space is a three-

dimensional continuous vector that includes the angular position and velocity of the robot’s

body, and the linear velocity of the system. The input is a one dimensional continuous signal

that sets a target velocity for both wheels.

The second dynamic system that users operate is a simulated race car (Fig. 6.4b). When

controlling this system, users are told (1) that they are free to move around the environment

however they would like, and (2) that they should take caution not to drive off of the road (i.e

the safety constraint). This can be challenging for a novice operator due to the narrowness

of the road and the fact that the car can go unstable (e.g., skid out) if the force applied to

the system exceeds the friction limit of the ground surface. This system is based on an open-

source package released by OpenAI [34] and developed using the Box2D physics engine. The

observation space is a six dimensional continuous vector that includes the (x, y, θ) position of

the car and the associated velocities (ẋ, ẏ, θ̇). The input to the system is a three dimensional

continuous vector that defines the desired heading for the robot, the positive acceleration (gas)

and negative acceleration (break).

The complexity of these two systems makes them useful as testbeds to validate the impact

of our shared control algorithm. In particular, stabilization and environmental constraints are

important challenges for robotic systems in human-centered domains where the human partner

is often co-located with the mechanical system. Our implementation is provided online for free

: https://github.com/asbroad/mpmi_shared_control.

https://github.com/asbroad/mpmi_shared_control
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6.6.2. Experimental Design

To evaluate the impact of our shared control algorithm we ran a human-subjects study

(n=20) in which participants operated the system under two distinct interaction paradigms:

• User-only control (No assistance)

• Model Predictive Minimal Intervention Shared Control

The order in which the participants saw the two paradigms was randomized and counter-

balanced to account for ordering effects. In each trial, participants were told to perform what-

ever action they would like so long as the system remained safe. They were also told that in

some conditions an autonomous partner would help maintain safety, but they were not told how

it would help. A trial would end when the system violated one of the defined safety constraints

or after a maximum alloted time (balance bot: 20 seconds, race car: 30 seconds). Each partici-

pant interacted with the system 10 times in each environment under each control condition. In

the race car environment, the morphology of the road was generated randomly at the start of

each trial, however, the same random seeds were maintained across participants to ensure that

each subject saw the same road configurations.

6.6.3. Implementation Details

6.6.3.1. Safety Computation. In both experimental environments, the system is considered

unsafe when it violates hard geometric constraints that represent physical barriers. For the

balance bot this is defined as the robot body colliding with the ground. For the race car this

is defined as driving off the track. To compute the safety of a predicted trajectory we evaluate

the configuration of the system at each discrete timestep. Theoretically, these geometric checks

provide strong safety guarantees as we always pick the applied control signal from the subset of
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sampled inputs that do not violate the defined bounds. In practice, the accuracy of this method

relies both on precise system models and our ability to account for noise in the dynamics and/or

sensors. In this work, we account for these errors by adding an inflated barrier beyond the

natural collision points to reduce the impact of inaccurate predictions. Importantly, even with

errors in the dynamics model, and noise in the sensor measurements, one can define an inflation

radius that provides strong guarantees on the safety of the system [86, 85]. However, in this

initial work, we simply rely on a hand-tuned inflation radius.

6.6.3.2. Algorithm Parameters. The implementation of our algorithm requires defining a

small set of parameters, the two most important of which are the number of control samples

N , and the length of the receding horizon T . As these parameters increase the approximation to

the true solution improves, however, this comes at a cost of increased computational complex-

ity. To address this issue, we provide a highly parallelized implementation of our algorithm that

evaluates each trajectory independently on an NVIDIA GeForce 860M GPU (details in Chap-

ter 6.5). To provide a good user experience and demonstrate the scalability of our algorithm, we

select a large N : 10,000 for the balance bot and 10,120 2 for the race car. The receding horizon

T (T = 30 for the balance bot, T = 25 for the race car) was chosen based on observations of

each system under MPMI-SC with random inputs.

6.6.3.3. Basis Selection. Koopman operator system identification requires defining a basis to

approximate the nominally infinite dimensional Hilbert space that the Koopman operator acts

on. We select this basis through data-driven methods (as described in Section 6.4.1). In par-

ticular, we generate a set of 50 and 150 random basis functions for the balance bot and race

car environments, respectively. The chosen learning algorithm [75] selects the most relevant

2Chosen to produce equally spaced samples in all 3 input dimensions.
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basis functions for modeling each system, resulting in 6 and 26 basis functions for the balance

bot and race car environments, respectively. All parameter choices are well documented in the

open-source code.

6.7. Results

We first explore the impact of our algorithm on the safety of the human-machine system,

and the users’ response to the intervention of the autonomy. We then detail the computational

performance of our system using the defined parameter settings. Finally, we provide a secondary

analysis of metrics that relate to the human operator’s control skill and style.

6.7.1. Impact of Shared Control on Safety

To evaluate the impact of MPMI-SC on the safety of the joint system we compare (1) the

average fraction of safe interactions to unsafe interactions and (2) the average time it took for

Figure 6.5. Average success rate (left) and average time to failure (right), broken
down by environment and control paradigm. The maximum interaction time was
20s in the balance bot and 30s in the race car. Both metrics improve significantly
(∗ ∗ ∗ : p < 0.005) under shared control.
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Figure 6.6. Average user response (agreement) to post-experiment question-
naire. Black bars are standard deviations.

the system to enter an unsafe state under each control paradigm (Fig. 6.5). To compare these

values, we use a non-parametric Wilcoxon signed-rank test. In both experimental environments

we find that MPMI-SC significantly improves the rate at which users are able to safely control

the system when compared to a user-only control paradigm (p < 0.005). Similarly, we find

that users are able to safely control the system for a significantly longer amount of time under

shared control then when under user-only control (p < 0.005).

6.7.2. User Acceptance of Shared Control Paradigm

We next evaluate the users’ acceptance of the assistance provided by the autonomous sys-

tem. As mentioned in Section 6.2, the majority of shared control systems assist a user in achiev-

ing a specific task. The assistance can therefore come at the expense of user satisfaction as the

human partner often feels that they are fighting the autonomy [54]. In contrast, we develop

a task-agnostic shared control paradigm that adheres to the human partner’s desires at each

instant.
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To evaluate the user experience under MPMI-SC we asked participants to fill out a post-

experiment questionnaire (Fig. 6.6). Statements were rated on a 5-point Likert-type scale where

1 represents strong disagreement and 5 represents strong agreement. Overall, user’s felt the

assistance provided by MPMI-SC helped them keep the robot safe and execute their indented

commands. Perhaps most telling is that the participants strongly preferred operating the system

with assistance from the computer, and did not feel frustrated by the assistance.

6.7.3. System Performance

We now describe the computational efficiency of MPMI-SC using the parameters defined

in Section 6.6.3.2. Our algorithm is capable of generating trajectories at ∼7000 Hz and ∼3500

Hz in the balance bot and race car environments. Incorporating the safety checks, the system

runs at ∼100 Hz and ∼60 Hz, respectively (i.e., between 600,000 and 1,000,000 trajectories

every second). MPMI-SC is faster in the balance bot as it relies on a smaller basis and more

efficient safety checks. A detailed description of our GPU implementation and the scalability

of MPMI-SC is provided in Chapter 6.5.

We also compute the maximum possible deviation between a user’s input and the closest safe

signal at each timestep. This value is determined by evaluating Equation (6.2) with a known

n-dimensional input volume (λ∗) and number of samples (N ). If the user’s input is considered

safe over the receding horizon (i.e., through our prediction method described in Section 6.4.2),

this value represents the maximum influence of the autonomous partner on the applied signal.

If the user’s input is not safe over the predicted trajectory, this bound represents the maximum

possible difference between the true closest safe signal and the applied signal. For the balance

bot, the maximum deviation isE = 0.0001E = 0.0001E = 0.0001 because λ∗(U) = 2 (i.e., 1D input that spans [−1, 1])
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and N = 10, 000. For the race car, the maximum deviation is E = 0.0002E = 0.0002E = 0.0002 because λ∗(U) = 4

(i.e., 3D input where the heading spans [−1, 1], the gas spans [0, 1], and the break spans [−1, 0])

and N = 10, 120.

How large an impact an intervention of the described magnitudes has on the dynamics of a

dynamic system is dependent on each particular machine. However, we note that both values

described in this work are very small. We therefore hypothesize that there is likely no discernible

difference between the effect of the intended signal and the applied signal when the user’s input

is considered safe. If there were a large impact on the system dynamics due to an intervention

of this magnitude, the system may be chaotic and therefore challenging to operate no matter

what controller was used [61].

6.7.4. User Control Skill and Style

Finally, we provide a secondary analysis of the data collected during our experiment to

evaluate the users’ control skill and style. The proposed metrics are easy to compute based on

the users’ input and the trajectories generated at each timestep.

6.7.4.1. Operator Control Skill. We first calculate the average observed deviation between

the user input and the closest safe signal as a proxy for the users’ understanding of the system

dynamics and their control skill. To illustrate this relationship consider a car making a tight

turn. If the human partner understands that they need to change their heading and speed to stay

on the road during the turn, this metric will remain low (Sec. 6.4.4). If, however, the human

partner does not understand this relationship and relies on the autonomous partner to maintain

the safety of the system during the turn, this metric will increase. The average value of this

metric will be within the described bound (EEE, above) if, and only if, all of the user’s controls
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Metric Control Balance Bot Race Car

Avg. Deviation User-only 0.46 ± 0.37 0.05 ± 0.03
MPMI-SC 0.21 ± 0.21 0.07 ± 0.06

Avg. % Safe Rollouts User-only 0.28 ± 0.15 0.38 ± 0.09
MPMI-SC 0.50 ± 0.10 0.35 ± 0.08

Table 6.1. Average deviation and average percentage safe rollouts, broken down
by environment and by control condition.

are considered safe during the course of their interaction. Otherwise this value will increase

according to the minimal amount required to maintain safety.

6.7.4.2. Operator Control Style. We then calculate the average percentage of sampled roll-

outs that are safe at each timestep as a proxy for the user’s control style. A lower percentage

of safe trajectories suggests that the user is operating the system in a more dangerous manner

(i.e., the system may be closer to entering an ICS). However, we note that this metric alone does

not directly relate to the user’s control skill as there are many cases in which one may trade off

notions of safety for performance. To illustrate this relationship consider, again, a person in

a car taking a tight turn to decrease the time of their drive. If this value correlates positively

with safe control of the system, we can say that the operator likely has a high degree of skill

and is explicitly trading off conventional notions of safety (e.g., distance from an obstacle) for

improved performance. However, if this metric correlates positively with unsafe behavior, it is

likely that the operator is unskilled and making poor control decisions.

6.7.4.3. Analysis. In the balance bot environment, we find that the user’s input more closely

aligns with the closest safe signal under MPMI-SC (Table 6.1). We also observe that the system

remains in a state where more potential actions remain safe over the horizon. We interpret

these results as evidence that the users provided more competent control with assistance than

without. In the race car environment, we find that, in both control conditions, the user’s input
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is nearly equally aligned with the closest safe signal, and that there are similar percentages of

potentially safe actions. We interpret these results as evidence that MPMI-SC had less impact

in this environment then in the balance bot. Evidence of this interpretation can also be seen in

Figure 6.5 where we find larger raw differences between the safety metrics in the balance bot

environment than in the race car environment. However, the differences between each of these

primary safety metrics are statistically significant suggesting that, even when MPMI-SC is less

impactful, it still meaningfully improves the safety of the joint system. Both proposed metrics

are indirect measures of the user’s control skill and style, but the preliminary results (Table 6.1)

suggest they warrant further investigation. In future work we plan to evaluate how they evolve

over time for an individual operator.

6.8. Discussion

In this section we provide additional observations from our study and describe a limitation

of our approach.

6.8.1. Study Observations

One piece of information that is not reflected in our analysis is how people alter their control

strategy when they are under different paradigms. For example, participants were observed

testing the limits of the assistance. That is, users would intentionally operate the system at the

boundary of safety, and even act in an adversarial manner to test the reliability of MPMI-SC. In

contrast, under user-only control, participants were much more cautious. This is potentially a

consequence of not explaining how the autonomous partner would provide assistance; however,

we also believe this behavior aligns with human nature as people often explore while they learn.
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Another observation relates to why MPPI-SC had a larger impact on the balance bot than on

the race car. In particular, participants were more likely to have prior experience operating car-

like systems then unstable machines like the balance bot, which could mean they were better

able to provide safe control based solely on experience and intuition. Additionally, a main chal-

lenge users faced in controlling the race car is that it can enter a skidding state. This behavior

was not explicitly modeled in our system and therefore not accounted for by the autonomous

partner. It is likely we would see further improvements in safety if we (1) explicitly considered

the hybrid dynamics of the system or (2) incorporated a cost to penalize the skidding behavior.

To ensure safety in the real-world it would be important to explicitly account for these properties

when implementing MPMI-SC on new systems.

6.8.2. Limitation in Prediction of Safety

As described in Section 6.4, the control signal sent to the robot is selected based on the

user’s desires at each instant and therefore does not require a model of the user. However, to

compute the safety of a given control action, we implicitly embed a naı̈ve model of the user that

assumes the human partner will continue to apply nearly the same input over the time-horizon.

The negative implication of this assumption is that we will occasionally reject user inputs that

seem dangerous, but are not in reality if the user quickly adjusts their strategy. Therefore,

there will be trajectories that the person would like to execute and are safe (by recovering

at a later timestep) that MPMI-SC incorrectly rejects. Despite this limitation, it is possible

that our iterative, receding horizon approach alleviates the impact on the user’s acceptance by

recomputing the set of dangerous actions at each timestep. We leave a deeper evaluation of this

idea to future work.
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6.9. Data-driven Trust-based Model-based Shared Control

As a supplementary result to the current chapter, and final piece of analysis in this dis-

sertation, I describe the outcome of a preliminary study that evaluates the intersection of our

MPMI-SC framework and the trust-based shared control paradigm proposed in Chapter 3. This

evaluation is based data collected from a third experimental condition in the human-subjects

study detailed in Section 6.6.2. That is, in addition to the two previously discussed control

paradigms, participants operated the robot under MPMI-SC with a dynamic trust level. Just as

described in Chapter 3, this trust metric evolves based on the observed quality of the interactions

between an individual human partner and the autonomous system. The learned trust metric is

then used to modulate the control authority granted to the human-in-the-loop to personalize the

influence of the autonomous partner, and improve system safety.

6.9.1. Formulation of Trust

To define, and make use of, a formal notion of trust, we detail two important steps as de-

scribed in Section 3.3. That is, we define the

• Evaluation of User Input

• Modulation of User Input via Trust

The notion of trust discussed in this work is motivated by the same theoretical understanding

of the concept described in Chapter 3. We therefore take a control-theoretic viewpoint that

rewards users with greater authority when they exhibit a clear understanding of the system

dynamics and control problem. In contrast, we grant greater authority to the autonomous partner

when there is a lack of quantitative evidence supporting the same hypothesis with the goal

of improving the safety of the joint system. This metric therefore includes no task-specific
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information, and is generalizable to any human-machine system. To evaluate the user input, the

trust metric is calculated as a function of the deviation between an individual user’s input and

the closest control input that is deemed safe by our MPMI-SC algorithm. As described in 3.3,

we model this variable as a single dimensional Gaussian distribution. We then use this metric to

modulate the user input by increasing or decreasing the inflation radius applied to obstacles in

the environment. In turn, the inflation radius impacts the MPMI-SC system’s prediction of the

safety of the robot over a receding horizon. A small inflation radius allows the robot to move

close to dangerous regions of the state space, while a large inflation radius restricts the motion

of the robot to enforce stronger safety constraints. The trust metric evolves over time according

the same probabilistic update equation described in Section 3.3. This work differs from the

paradigm presented in Chapter 3 as it aims to improve the safety of the joint system, instead of

reducing control effort.

6.9.2. Experimental Design

To evaluate the impact of a dynamic trust metric in our MPMI-SC paradigm, we include a

third experimental condition in the human-subjects study described in Section 6.6.2. This third

condition requires a small modification to the MPMI-SC paradigm (Algorithm 4) to incorporate

the autonomy’s trust in the human partner. In particular, instead of relying on a predefined

obstacle inflation radius3 when performing the safety check (Line 7), the new condition uses

a dynamic inflation radius. The size of the inflation radius is initially set to a high level as

we assume no a priori knowledge of the human-in-the-loop and therefore take a conservative

3It is standard practice to “inflate” obstacles beyond their natural (or sensed) borders to account for errors in the
system model and sensor noise.
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approach to ensure the safety of the joint system. The inflation radius is then updated according

to the trust metric described above.

It is important to note that, unlike the other two experimental conditions described in this

study, MPMI-SC with dynamic trust is always presented to the participant at the end of the

study. For this reason, the experimental design does not account for user experience and natural

human learning in this new condition. As such, we remind the reader that these results should

only be seen as preliminary. On this basis, we explicitly choose not to statistically analyze the

results of this experimental condition, and only describe high level trends that are apparent from

the study.

6.9.3. Results

The primary metrics we evaluate in this section are the same two metrics described in Sec-

tion 6.7. As one can observe in Figure 6.7, participants under MPMI-SC with Dynamic Trust

Figure 6.7. Average success rate (left) and average time to failure (right), broken
down by environment and control paradigm. The maximum interaction time was
20s in the balance bot and 30s in the race car.
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Figure 6.8. Evolution of inflation radius by user in balance bot (left) and race
car (right) environments. Each line represents a single user.

perform better, both in terms of the average safety of the interaction and the average length of

the interaction, than under user-only control in both environments.

In addition to the primary metrics, we also depict the evolution of the inflation radius by

trial number (as a proxy for the trust metric) for each participant in each environment (see Fig-

ure 6.8). In the subfigure that represents the evolution of the inflation radius in the balance

bot environment (left), we observe a similar patter to the initial result in Section 3.5 (See Fig-

ure 3.7). That is, there is no clear trend in the evolution of this metric that leads to the improved

performance. This suggests that the influence of trust on the performance of the human-in-the-

loop cannot be prescribed to a predefined evolution over time that can be applied to every user.

Instead, it appears that the trust metric adapts to each individual user and therefore personalizes

the assistance from the autonomous partner.

There is, however, a noticeable difference in the evolution of the inflation radius in the race

car environment (Figure 6.8 (right)). In this environment, trust appears to reliably increase for

each participant in the study (as observed by the shrinking of the inflation radius). While this

result may appear contradictory at first glance, we believe it actually highlights the strength
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of the proposed metric in evaluating each user’s understanding of the system dynamics. That

is, as described in Section 6.7, we found that overall, MPMI-SC had a smaller impact on the

participants’ performance in the race car environment then in the balance bot environment. We

hypothesized that one explanation for this result was that participants were more likely to have

prior knowledge of how to operate a car-like system. This interpretation was supported by

the data when comparing the average performance in the user-only control condition across

environments (see Figure 6.5). Under this same interpretation, one would expect trust to grow

quickly for each user in the race car environment, as the participants come into the study with

useful prior information relating to the system dynamics. As such, participants were able to

quickly demonstrate their competency through their interaction, and trust grew accordingly,

allocating the vast majority of the control authority to the human-in-the-loop.

6.9.4. Main Takeaways and Caveat

In this supplementary piece of analysis, we provide a preliminary evaluation of a method

for incorporating the autonomous partner’s trust in the human operator with model predictive

minimal intervention shared control. In particular, we demonstrate that the same samples that

are used to compute the optimal control solution can be used to compute an adaptive trust

metric. This metric can then be used to modulate how control is allocated to each partner in a

human-machine system. The results of the described human-subjects study reveal a pattern that

suggests that dynamic trust may improve the performance of a joint human-machine system with

respect to a user-only control baseline. However, the described experiment does not account for

experience or human learning and we therefore claim that this first experiment only suggests that

incorporating a dynamic notion of the autonomy’s trust in an individual user does not degrade
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the performance of the joint system. Given the trends observed in this preliminary study, we

believe the proposed approach could be a fruitful direction for future research.

6.10. Conclusion

In conclusion, we described a shared control paradigm that enhances a human partner’s abil-

ity to operate complex, dynamic machines by incorporating safety constraints without explicit

knowledge of the user’s long-term objective. Our approach relies on a simple representation

of the joint system (i.e., the Koopman operator) which, in turn, means we can very quickly

generate and evaluate the safety of a large number of potential trajectories through the paral-

lelization capabilities of a GPU. Importantly, this representation can be learned from data and

therefore generalizes to any pair of partners. Finally, our approach adheres to the minimal in-

tervention principle to ensure that the human partner is allocated the majority of the decision

making authority throughout the interaction.

We evaluated the efficacy of our Model Predictive Minimal Intervention Shared Control

(MPMI-SC) paradigm with a human-subjects study consisting of 20 participants. The results

demonstrated that our approach is able to improve the general safety of the joint system without

a priori knowledge of the user’s desires. Additionally, we found that the participants enjoyed the

assistance provided by the autonomy (and reported low levels of frustration), a feature lacking in

many shared control paradigms [54]. Finally, a preliminary follow up study demonstrates how

one could integrate ideas from trust-based shared control into our MPMI-SC framework. Our

code is available online for free : https://github.com/asbroad/mpmi_shared_

control.

https://github.com/asbroad/mpmi_shared_control
https://github.com/asbroad/mpmi_shared_control
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CHAPTER 7

Conclusion

Shared control, as a paradigm, is a fundamental building block in the field of human-

machine interaction. The long term promise of SC is based on the idea that we can use tech-

niques from autonomous robotics to simultaneously (1) improve a human’s ability to operate a

dynamic system by offloading challenging aspects of control problem to an autonomous part-

ner, and (2) regulate the user input to enforce safety and stability constraints on the joint system.

Continued advancement in the theory, and engineering, of shared control systems is therefore

necessary for the successful adoption of human-oriented robotic technologies into our society.

In particular, by incorporating an autonomous partner into the control loop of a dynamical sys-

tem, we can improve, or restore, the natural abilities of a human partner in fields as diverse as

assistive and rehabilitative medicine, search and rescue, and transportation.

The majority of modern shared control systems rely on a priori knowledge of the system

dynamics and the human in the loop. Additionally, SC systems often depend on a priori knowl-

edge of, or the ability to accurately predict, the user’s desired goal. In this dissertation, I pro-

pose a set of data-driven techniques that can be used to develop platform- and user-independent

shared control paradigms. Additionally, motivated by the fields of assistive and rehabilitative

medicine, control is allocated such that the human partner retains a large amount of freedom to

achieve unspecified behaviors. The autonomous partner is therefore primarily concerned with

task-agnostic features such as stability and safety.
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Trust Adaptation Leads to Lower Control Effort in Shared Control of Crane Automa-

tion (Chapter 3) In this chapter I describe a data-driven notion of the autonomous partner’s

confidence in a specific human partner. This trust metric is task-agnostic, and instead based on

a control-theoretic foundation that describes the user’s understanding of the system dynamics,

and their skill in operating the robot. The metric is then used to develop a personalized shared

control paradigm that adapts to the user in real-time, and is shown to reduce the control effort

required to achieve a specific task.

Data-driven Model-based Shared Control of Human-Machine Systems (Chapter 4) In

this chapter I introduce data-driven model-based shared control to the field. Data-driven MbSC

generalizes the standard SC paradigm to generic pairs of human-machine partners. That is,

I describe an efficient model learning methodology for learning quantitative representations

of the joint human-machine system from observation. These models are then integrated with

techniques from optimal control to generate the policy of the autonomous partner. Finally, the

autonomous partner’s policy can be used regulate the input of the human partner. Addition-

ally, this chapter demonstrates the data-efficiency of the chosen modeling algorithm as well

as the computational-efficiency of the learning algorithm. Importantly, results from the human-

subjects study demonstrate the efficacy of the descried data-driven MbSC paradigm in an online

learning scenario where we have no a priori knowledge of either partner, and no prior observa-

tion data to learn from.

Operation and Imitation under Safety-Aware Shared Control (Chapter 5) In this chap-

ter I extend data-driven MbSC to scenarios in which the human operator’s desired behavior (or

goal) is unknown. The autonomous partner is therefore solely responsible for improving the

safety and stability of the joint human-machine system. This paradigm increases the influence



162

of the human operator by removing the assumption that we can predict (or have a priori knowl-

edge of) a specific desired goal or motion. Results from a human-subjects study illustrate the

significant impact of the described SC paradigm on the safety of the joint system. This chapter

also shows that data collected under the safety-aware shared control paradigm can be used to

develop autonomous control policies that safely mimic the behavior demonstrated by the human

operator. This suggests that task-agnostic SC algorithms can also be used to learn actions a user

frequently repeats, which can then be bootstrapped into a task-aware shared control algorithm

that uses information from the learned autonomous policies.

Highly Parallelized Data-driven MPC for Minimal Intervention Shared Control (Chap-

ter 6) In this chapter I further extend the influence of the human partner in a task-agnostic

data-driven MbSC paradigm. In particular, I describe a SC algorithm that explicitly maximizes

the authority granted to the human partner while simultaneously accounting for the safety of

the joint system, without a priori knowledge of a desired task. A human-subjects study demon-

strates (1) the significant impact of our SC system on the safety of the robot, and (2) the fact that

the participants’ prefer our shared control paradigm to a user-only control paradigm, and report

low levels of frustration when using the system. Finally, I describe two metrics that relate to

the user’s understanding of the system dynamics and their control skill. These metrics are anal-

ogous to the metric proposed in Chapter 3 and, as such, can be interpreted as the autonomous

partner’s trust in the individual human operator. The results of a preliminary analysis of this

idea mirrors the results from Chapter 3.

Taken together, the works presented in this thesis suggest a direction for future shared con-

trol research. The described SC algorithms rely on a tight integration between the human and

autonomous partners (i.e., the entire autonomous decision making process must be very fast)
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and appropriately tuned assistance levels (i.e., the human partner is allocated the majority of the

control authority, while the autonomous partner is primarily concerned solely with features re-

lated to system safety). To address these points, I have described data-driven SC algorithms that

are generalizable to any pair of human and machine partners. Additionally, through an iterative,

real-time optimization process, the MbSC algorithms are able to respond to, and account for the

control deficiencies of, each individual human partner. Finally, we extend the personalization

of MbSC algorithms through a data-driven modeling technique that relies on a control-theoretic

notion of the autonomous partner’s trust in the human partner.

As informative as the chapters of this thesis are, there are of course additional limitations

that we have not addressed. The truly exciting opportunity, therefore, lies in future work that

builds on the ideas (and open-source code) proposed in this dissertation. For example, while

the implementations described in this work significantly improve the safety of the joint human-

machine systems we evaluated, they do not provide a guarantee of safety (a feature that could be

considered a requirement in certain scenarios). There are, of course, various formal techniques

that one could imagine incorporating into the general data-driven model-based shared control

paradigm to guarantee safety (e.g., control barrier functions, linear temporal logic, etc...). Addi-

tionally, the work presented in this thesis assumes access to high fidelity state information that

would otherwise need to be captured via noisy sensors in the real world. How to best integrate

real-time sensor information [30] is therefore another open research question that significantly

improve our ability to transition this research out of the laboratory environment. Similarly, the

experiments described in this thesis assume deterministic motion, which allow us to define hard

geometric safety constraints without concern for stochasticity in the system dynamics. In future

work, we plan to explore alternative methods that can be used to define safety constraints for
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non-deterministic systems [35, 98]. In conclusion, the continued development of data-driven

model-based shared control algorithms offers the promise of extending a human beings ability

to achieve tasks that were previously too complex or dangerous to consider without the aid of a

robotic partner.
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